
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including t
and maintaining the data needed, and completing and reviewing the collection of information. Send commer
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate fc
1204, Ariington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188) Washington, uo ^irj»*

AFRL-SR-BL-TR-98-

V~ *T^ thering
:tion of
y, Suite

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

31 March 1997
3. REPORT TYPE AND DATES COVERED
Final (01 Jul 95-31 Dec 96)

4. TITLE AND SUBTITLE
Multistrategy Learning for Computer Vision

6. AUTHORS
Professor Bir Bhanu

5. FUNDING NUMBERS

F49620-95-1-0424

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California, Riverside

Riverside, CA 92521

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
110 Duncan Avenue, Room B-115
Boiling Air Force Base, DC 20332-8080

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Current IU algorithms and systems lack the robustness to successfully process imagery acquired under real-world scenario. They do not

provide the necessary consistency, reliability and predictability of results. Robust 3-D object recognition, in practical applications, remains

one of the important but elusive goals of IU research. With the goal of achieving robustness, our research at UCR is directed towards

learning parameters, feedback, contexts, features, concepts, and strategies of IU algorithms for model-based object recognition. Our

multistrategy learning-based approach is to selectively apply machine learning techniques at multiple levels to achieve robust recognition

performance. At each level, appropriate evaluation criteria are employed to monitor the performance and self-improvement of the system.

We developed theoretically sound approaches to recognition and to learn segmentation for robust model-based recognition. We have

developed two approaches based on reinforcement learning for closed-loop object recognition in a multi-level vision system. We show that

in simple real scenes with varying environmental conditions and camera motion, effective low-level image analysis and feature extraction

can be performed. We show the performance improvement of an IU system combined with learning over an IU system with no learning.

Our initial research using outdoor video imagery and the Phoenix algorithm has demonstrated that (a) adaptive image segmentation can

provide over 30im-provement in performance, as measured by the quality of segmentation, over non-adaptive techniques, and (b) learning

from experience can be used to improve the performance over time. We have developed some novel techniques and we have some results

for context reinforced ATR using learning techniques. These results have yet to be validated on a larger dataset.

14. SUBJECT TERMS
algorithms, reliability, predictability

19980129 064 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18
Designed using WordPerfect 6.1, AFOSPJXPP, Oct 96

.M ^

Multistrategy Learning for
Computer Vision

Technical Report
VISLAB - Learning - 97 - 6

July 1, 1995 to December 31, 1996
Grant Number: F49620-95-1-0424

March 25, 1997

Prepared for the
Air Force Office of Scientific Research

Sponsor Code 2416
and the

Advanced Research Project Agency

by
Bir Bhanu

Principal Investigator

University of California
College of Engineering

Riverside, CA 92521-0425

Contributors:

Bir Bhanu
Jing Peng Xin Bao

Yong-Jian Zheng Songnian Rong

% M

Contents

1 Summary 1

1.1 Objectives 1

1.2 Accomplishments 1

1.2.1 Learning Feedback and Parameters In an IU System (Chapters 2, 3
and 4) 1

1.2.2 Learning To Integrate Vusual Information (Chapter 5) 3

1.2.3 Learning To Integrate Context With Clutter Models (Chapter 6) . . 3

1.2.4 Input Adaptation (Chapter 7) 4

1.2.5 Learning Recognition Strategies(Chapter 8) 4

1.2.6 Learning Composite Visual Concepts(Chapter 9) 5

1.3 Publications (1 October 95 and 31 December 96) 6

1.3.1 Published . 6

1.3.2 Accepted but not yet published 7

1.3.3 Submitted but not yet accepted 7

1.4 Interactions/Transitions 8

1.4.1 Participation/presentations at meetings, conferences, seminars ... 8

1.4.2 Consultative and advisory functions 8

1.4.3 Transitions 8

1.5 New discoveries, inventions, or patent disclosures 9

2 Closed-Loop Object Recognition Using Reinforcement Learning 10

2.1 Introduction 10

2.2 Reinforcement Learning System for Segmentation Parameter Estimation . . 13

2.2.1 The Problem 13

2.2.2 Learning to Segment Images , 13

2.3 Reinforcement Learning 16

2.3.1 Connectionist Reinforcement Learning 18

2.3.2 The Team Architecture 19

2.3.3 The Team Algorithm 20

2.3.4 Implementation of the Algorithm 21

2.4 Experimental Results 22

2.4.1 Results on Indoor Images 25

2.4.2 Results on Outdoor Images 27

2.4.3 Results on a Large Simulated Data Set 30

2.4.4 Computational Efficiency 34

2.5 Conclusions . . 34

2.6 APPENDIX A: The Phoenix Segmentation Algorithm 35

2.7 APPENDIX B: The Cluster-Structure Algorithm for Matching 37

3 Adaptive Image Segmentation and Feature Extraction 38

3.1 Introduction 38

3.2 Our Approach 39

3.3 Reinforcement Learning 40

3.4 Reinforcement Learning for Object Recognition 42

3.5 Experimental Validation 45

3.6 Conclusion 48

4 Integrated Image Segmentation and Object Recognition 50

4.1 Introduction 50

4.1.1 Overview of the Approach 51

4.1.2 Related Work and Our Contributions 53

%

4.2 Technical Approach 55

4.2.1 Phoenix Image Segmentation Algorithm 56

4.2.2 Segmentation Evaluation 56

4.2.3 Reinforcement Learning for Image Segmentation 58

4.2.4 Feature Extraction and Model Matching 60

4.2.5 Biased Reinforcement Learning for Image Segmentation . 62

4.2.6 Algorithm Description 63

4.3 Experimental Results 64

4.3.1 Results on Indoor and Outdoor Images 65

4.3.2 Comparison of the Two Approaches 67

4.4 Conclusions and Future Work 68

5 Genetic Algorithm for Adaptive Image Segmentation 70

5.1 Introduction 70

5.2 Image Segmentation as an Optimization Problem 72

5.2.1 Genetic Algorithms 73

5.3 Genetic Learning for Adaptive Image Segmentation 74

5.3.1 Image Characteristics 75

5.3.2 Genetic Learning System 76

5.3.3 Segmentation Algorithm 78

5.3.4 Segmentation Evaluation 79

5.4 Segmentation Results 83

5.4.1 Segmentation Using Genetic Algorithm 83

5.4.2 Performance Comparison with Other Techniques 84

5.4.3 Demonstration of Learning Behavior 85

5.5 Scaling the Number of Parameters 86

5.5.1 Search Space and GA Control Mechanism 86

5.5.2 Genetic Algorithms and Hill Climbing 88

5.5.3 Experimental Results 97

m

/

5.6 Conclusions 98

6 Integrating Context with Clutter Models for Target Detection 102

6.1 Introduction 102

6.2 Learning Background Models via Self-Organizing Maps 103

6.3 The Classification Criterion 104

6.4 Reinforcement of Clutter Models Using Contextual Information 105

6.4.1 Stochastic Reinforcement Learning Algorithm 107

6.4.2 Implementation Concerns 109

6.5 Experimental Results HO

6.6 Conclusions 112

7 Performance Improvement by Input Adaptation 113

7.1 Introduction 113

7.2 Parameter Optimization Versus Input Adaptation for Performance Improve-
ments 114

7.3 Representations Versus Salient Features 115

7.3.1 Optimal Feature Extraction 115

7.3.2 Expressive Feature 116

7.3.3 Discriminating Feature 119

7.4 Adaptive Object Detection 120

7.4.1 Adaptor Design 121

7.4.2 Experimental Result for Adaptive Target Detection 122

7.4.3 Detection of Colored Objects 124

7.5 Conclusions 127

8 Case-Based Learning of Recognition Strategies 129

8.1 Introduction 129

8.2 Learning Recognition Strategies 130

8.2.1 Case-Based Reasoning (CBR) 130

IV

\

8.2.2 CBR in IU 132

8.2.3 Learning Method 133

8.2.4 An Example 135

8.2.5 Implementation Issues and Performance Evaluation 138

8.3 Future Work 139

9 Learning Composite Visual Concepts 140

9.1 Introduction 140

9.2 General Idea 142

9.2.1 Example 143

9.2.2 Goals 143

9.3 Approach 144

9.3.1 Task 1 — Model-Based Interpretation of Perceptual Groups 146

9.3.2 Task 2 — Composite Structure Model Acquisition and Refinement . 147

9.3.3 Task 3 — Composite Structure Learning Subsystem 147

9.4 Learning at the Intermediate-Level Vision: Previous Work 147

9.5 Explanation-Based Learning 149

9.6 EBL and Visual Concepts 150

9.6.1 Elements of the Learning Problem 150

9.7 Future Work 151

Bibliography 159

List of Figures

2.1 Conventional multi-level system for object recognition. 14

2.2 Reinforcement learning-based multi-level system for object recognition. . . 15

2.3 Main Steps of the Reinforcement Learning-Based Object Recognition Algo-
rithm 16

2.4 Left: Connectionist reinforcement learning system. Right: Bernoulli quasi-
linear unit 18

2.5 Team of Bernoulli units for learning segmentation parameters 20

2.6 Main Steps of the Proportional Training Algorithm 22

2.7 Twelve color images having simple geometric objects 25

2.8 Segmentation performance of the Phoenix algorithm with learned parameters. 28

2.9 Average confidence received by the three methods over time during training. 29

2.10 Trajectories for a particular run for each of the four parameters Hsmooth,
Maxmin, Splitmin, and Height during training on a particular image (Figure

2.7(g)) • 30

2.11 Samples of segmentation performance of the Phoenix algorithm with default
parameters on indoor color images (Figures, 2.7(a), 2.7(b) and 2.7(c), respec-
tively) 31

2.12 (a) and (b): Samples of outdoor color images with varying environmental
conditions, (c): Polygon approximation of the car used in the matching
algorithm • 31

2.13 Sequence of segmentations of the first frame during training 32

VI

2.14 (a) and (b): Segmentation performance of the Phoenix algorithm on two test-
ing images (frames 2 and 4) with learned parameters, (c) and (d): Samples of
segmentation performance of the Phoenix algorithm with default parameters
on the two images shown in Figure 2.12 33

2.15 Conceptual diagram of the Phoenix segmentation algorithm 36

3.1 Conventional system for object recognition 40

3.2 Reinforcement learning-based multi-stage system for object recognition. . . 40

3.3 The Q(A)-learning algorithm 42

3.4 Main steps of the delayed reinforcement learning algorithm for parameter
adjustment for segmentation and feature extraction 44

3.5 A sample outdoor color image (Frame 1 of a 20 frame sequence) and (b)
polygonal model of the car 45

3.6 Experimental results (training) for the image in Fig. 5. (a) matching con-
fidence level (b) parameter M2 (c) parameter HSMOOTH (d) parameter
MAXMIN 46

3.7 Improvement of the segmentation over time, (a) initial segmentation (b)
segmentation at time step 200 (c) segmentation at time step 400 (d) segmen-
tation at time step 600 46

3.8 Polygonal approximation of the car. (a) default M2 parameter (b) learned
M2 parameter 47

3.9 Experimental results, (a) third frame of the image sequence (b) segmentation
with default parameters (c) segmentation with learned parameters (d) final
polygonal approximation for the car 48

3.10 Experimental results on an indoor image, (a) the color image (b) segmenta-
tion with default parameters (c) segmentation with learned parameters (d)
final polygonal approximation for the wedge 48

4.1 Reinforcement learning integrated image segmentation and object recognition
system 52

4.2 Edge-border coincidence, (a) input image; (b) Sobel edge magnitude image
(threshold = 200); (c) boundaries of the segmented image. Segmentation
parameters are: Hsmooth=7, Maxmin=128, Splitmin=47, Height=60 57

vii

/

4.3 (a) Global edge-border coincidence vs. matching confidence; (b) Local edge-
border coincidence vs. matching confidence for recognizing the cup in the
image shown in Figure 4.2(a) 59

4.4 Basic structure of a Bernoulli unit • 59

4.5 (a) Boundaries of the segmented image shown in Figure 4.2(a)- (segmentation
parameters are: Hsmooth=7, Maxmin=128, Splitmin=47, Height=54). (b)
Selected regions whose areas are in the expected range (200 - 450 pixels),
(c) Polygon approximation of these regions (parameters as specified in this
section) 61

4.6 Matching confidence history of three runs of the biased and unbiased RL
algorithms on the image shown in Figure 4.2(a). (a) biased; (b) unbiased. . 62

4.7 Algorithm description 64

4.8 Row 1: input images; row 2, 3: corresponding segmented image and recog-
nized object. For each input image, global segmentation evaluation, local
segmentation evaluation for the selected object, and matching confidence are
(0.67, 0.74, 0.87); (0.87, 0.62, 0.93); (0.22, 0.82, 0.91); (0.68, 0.73, 0.92). The
learned Phoenix segmentation parameters Hsmooth, Maxmin, Splitmin, and
Height after local learning process are (7 122 47 52); (7 128 47 52); (5 471 19
58); (11 192 59 48) 65

4.9 Row 1: input images; row 2, 3: corresponding segmented image and recog-
nized object. For each input image, global segmentation evaluation, local
segmentation evaluation for the selected object, and matching confidence are
(0.59, 0.51, 0.82); (0.79, 0.57, 0.85); (0.85, 0.76, 0.88); (0.82, 0.53, 0.92). The
learned Phoenix segmentation parameters Hsmooth, Maxmin, Splitmin, and
Height after local learning process are (11 367 43 26); (11 259 23 46); (11 259
29 56); (9 276 31 46) 66

4.10 (a) CPU time for 5 different runs on 12 indoor images and the average; (b)
Number of loops for 5 different runs on 12 indoor images and the average;
(c) CPU time for 5 different runs on 12 outdoor images; (d) Number of loops
for 5 different runs on 12 outdoor images 67

4.11 Comparison of two approaches: scheme 1-approach presented in this paper,
scheme 2-Peng and Bhanu's approach (a) Comparison of the average CPU
time of 5 different runs on 12 indoor images; (b) Comparison of the accumu-
lated average CPU time of 5 different runs on 12 indoor images 68

5.1 Segmentation quality surface 72

vm

5.2 Adaptive image segmentation system 75

5.3 Representation of a knowledge structure used by the genetic learning system.
The image characteristics (image statistics and external variables), segmen-
tation parameters, and the image quality or fitness of the parameter set are
stored in each structure - 76

5.4 Illustration for the quality measures used in the adaptive image segmentation
system, (a) Edge-border coincidence, (b) Boundary consistency, (c) Pixel
classification, (d) Object overlap. Object contrast is defined by using the
symbols shown in the center figure in (a) and the left most figure in (c). . . 90

5.5 Sample outdoor images used for adaptive segmentation experiments 91

5.6 Segmentation quality surfaces for Frame 1. (a) Edge-border Coincidence,
(b) Boundary Consistency, (c) Pixel Classification, (d) Object Overlap, (e)
Object Contrast, (f) Combined Segmentation Quality 92

5.7 Segmentation of Frame 1 and Frame 11 for the adaptive technique, default
parameters, and the traditional approach 93

5.8 Performance of the adaptive image segmentation system for a multiple day
sequential test 94

5.9 Volume representation of segmentation parameter search space 94

5.10 Genetic algorithm crossover operation, (a) Scheme for doing 4-point crossover
with each chromosome containing four parameters, (b) A complete scenario
for one crossover operation 95

5.11 Performance comparison for techniques based on (a) default parameters (+),
(b) GA plus hill climbing to generate the best parameter set for frame 1 only
(*), and (c) integrated technique, (parameter set generated for frame 1 in the
same manner as in (b) and hill climbing for all subsequent frames (o)). ... 99

5.12 Segmentation performance comparison using default and learned parameters.
(a) and (b) Frame2, (c) and (d) Frame 3, (e) and (f) Frame 16 101

6.1 Learning background clutter models for target detection 104

6.2 Projecting a testing feature vector into a clutter model 106

6.3 Context reinforced clutter modeling process 107

6.4 The stochastic reinforcement learning algorithm 109

6.5 Two examples of the 40 FLIR images used in our experiments. Ill

IX

6.6 The improved detection performance after context reinforcement of the back-
ground model. Dashed lines show results of the background model bank not
reinforced by the contextual information. Solid lines represent results of the
context reinforced background model bank, (a) correctly classified feature
cells (b) misclassined feature cells (c) all the feature cells in the testing images. 112

7.1 Parameter optimizing methodology for performance improvement 114

7.2 Input adapting methodology for performance improvement 116

7.3 A point cloud in a 2-dimensional space 117

7.4 Input adapting for the image thresholding algorithm. 121

7.5 Test Result Using SAR Images 123

7.6 Test Result Using a FLIR Image 123

7.7 An outdoor scene with a car and a yellow traffic sign near the car 124

7.8 Image pixels are mapped into the RGB color space 125

7.9 Grey scale images obtained by adaptive mapping 127

7.10 The discriminating mapping used to color images and compared with the
saturation mapping 128

7.11 The object detection from Frame 1, before and after post-processing 128

8.1 A CBR framework for learning recognition strategies 131

8.2 Representation of a case in the photointerpretation context 133

8.3 High-level object recognition based on CBR 136

8.4 High-level object recognition based on CBR (continued) 137

9.1 Domain-specific, composite visual concepts 144

9.2 Learning intermediate visual concepts using Explanation-Based Learning (EBL)-145

List of Tables

2.1 Sample ranges for selected Phoenix parameters 23

2.2 Changes of parameter values during training. 29

'4.1 Ranges for selected Phoenix parameters 57

5.1 PHOENIX parameters used for adaptive image segmentation 89

5.2 Number of segmentations under varying population size and crossover rate.
The threshold for minimum acceptable segmentation quality was set at 95%. 89

5.3 Number of segmentations under varying population size and selection of
crossover points 91

5.4 Number of segmentations under varying threshold 91

5.5 Performance comparison between pure GA and GA with hill climbing (crossover
points = 4, crossover rate = 80%, mutation rate « 1%) 98

7.1 Different Learning Rules For Feature Extraction 121

7.2 Weights after training by using the learning rule II 126

7.3 Weights after training by using the learning rule III 126

XI

Chapter 1

Summary

1.1 Objectives

Current IU algorithms and systems lack the robustness to successfully process imagery
acquired under real-world scenario. They do not provide the necessary consistency, reliabil-
ity and predictability of results. Robust 3-D object recognition, in practical applications,
remains one of the important but elusive goals of IU research. With the goal of achieving ro-
bustness, our research at UCR is directed towards learning parameters, feedback, contexts,
features, concepts, and strategies of IU algorithms for model-based object recognition.

Our multistrategy learning-based IU approach selectively applies machine learning tech-
niques at multiple levels to achieve robust recognition performance. At each level, appro-
priate evaluation criteria are employed to monitor the performance and self-improvement
of the system.

1.2 Accomplishments

1.2.1 Learning Feedback and Parameters In an IU System (Chapters 2,
3 and 4)

Problem: To develop theoretically sound approaches to control feedback which are based
on the results of recognition and to learn segmentation and feature extraction parameters
for robust model-based recognition.

Approach: We have developed two approaches based on reinforcement learning for closed-
loop object recognition in a multi-level vision system. These approaches use the team of
learning automata algorithm and the delayed reinforcement learning algorithm.

The closed-loop object recognition system evaluates the performance of segmentation
and feature extraction by using the recognition algorithm as part of the evaluation function.
Recognition confidence is used as a reinforcement signal to the image segmentation or feature
extraction processes. By using the recognition algorithm as part of the evaluation function,
the system is able to develop recognition strategies automatically, and to recognize objects
accurately on newly acquired images. As compared to the genetic algorithm which simply
searches a set of parameters that optimize a prespecified evaluation function, here we have
a recognition algorithm as part of the evaluation function.

In order to speed up the above algorithms we have developed a general approach (chapter
4) to image segmentation and object recognition that can adapt the image segmentation
algorithm parameters to the changing environmental conditions. The edge-border coin-
cidence is used for both local and global segmentation evaluation. However, since this
measure is not reliable for object recognition, it is used in conjunction with model matching
in a closed-loop object recognition system. Segmentation parameters are learned using a
reinforcement learning algorithm that is based on a team of learning automata and uses
edge-border coincidence or the results of model matching as reinforcement signals. The
edge-border coincidence is used initially to select image segmentation parameters using the
reinforcement learning algorithm. Subsequently, feature extraction and model matching are
carried out for each connected component which passes through the size filter based on the
expected size of objects of interest in the image. The control switches between learning
integrated global and local segmentation based on the quality of segmentation and model
matching.

Accomplishemnts: Using the Phoenix algorithm for the segmentation of color images,
a clustering-based algorithm for the recognition of occluded 2-D objects and a team of
learning automata algorithm, or a delayed reinforcement learning algorithm, we show that
in simple real scenes with varying environmental conditions and camera motion, effective
low-level image analysis and feature extraction can be performed. We show the performance
improvement of an IU system combined with learning over an IU system with no learning.

Future Work: (a) Develop a complete reinforcement learning-based system for 3-D model-
based object recognition with feedback among various levels, (b) Evaluate the performance
of the technique in real-world applications such as automatic target recognition (ATR) or
navigation, (c) Explore the delayed reinforcement learning (RL) algorithm for evaluating
robustness of an object recognition system and the amount of training data that can be
generated by the RL algorithm.

1.2.2 Learning To Integrate Vusual Information (Chapter 5)

Problem: To learn algorithm parameters, develop algorithms and evaluation criteria for
multisensor image segmentation and recognition from images acquired under varying envi-
ronmental conditions.

Aprroach: Genetic learning and other hybrid methods such as a combination of genetic
algorithms and hill climbing.

Accomplishments: Our initial research using outdoor video imagery and the Phoenix
algorithm has demonstrated that (a) adaptive image segmentation can provide over 30im-
provement in performance, as measured by the quality of segmentation, over non-adaptive
techniques, and (b) learning from experience can be used to improve the performance over
time. In our current work, we show that our approach scales with respect to the number of
parameters and the size of the search space. Genetic learning combined with a hill-climbing
technique is able to adaptively select good segmentation parameters and to generate the
best result using the least number of segmentations. ^From experiments designed to eval-
uate the scalability of our approach, we find that for the case of a four Phoenix parameter
set whose search space size is 1 million, we search about 0.5% of the search space.

Future Work: (a) Learning the optimal parameter settings for adaptive image segmen-
tation of multisensor imagery, (b) learning the optimal selection of image segmentation
algorithms and evaluation criteria for multi-scenario, and (c) learning the optimal sensor
combinations and cross-sensor validation of segmentation results.

1.2.3 Learning To Integrate Context With Clutter Models (Chapter 6)

Problem: To integrate contextual information with clutter models for target detection and
recognition. Current image metrics commonly used to characterize images do not correlate
well with the performance of target recognition systems.

Approach: The contextual parameters, which describe the environmental conditions for
each training example, are used in a reinforcement learning paradigm to improve the clutter
models and enhance target detection performance under multi-scenario situations. New Ga-
bor transform-based features and other statistical image features are used to capture the sta-
tistical properties of natural backgrounds in visible and FLIR images. The non-incremental
self-organizing map approach commonly used in an unsupervised mode is extended, by the
addition of a near-miss injection algorithm, and used as an incremental supervised learning
process for clutter characterization.

Accomplishments: A fast algorithm to compute the Gabor transform of a given image has
been implemented. We have implemented two new Gabor transform-based feature groups

and tested their classification performance on natural backgrounds. Experimental results
show that the two feature groups could capture certain characteristics of the backgrounds,
which are consistent with our theoretical expectations based on the physical meaning of
each attribute within the feature group.

Using 40 second generation FLIR images, four contextual parameters (time of the day,
depression angle, range to the target and air temperature) and 5 feature groups, we find
lOOlOclassifying a feature cell (rectangular regions in an image) as a clutter or a target.

Future Work: (a) Prove the convergence of the stochastic reinforcement learning algo-
rithm for multi-feature cases, (b) Test the approach on a larger data set with a variety of
contextual parameters, (c) Find the most influential environmental parameters for a given
sensor, find how a feature group is affected by a given environmental parameter and find if
we can make a feature invariant with respect to a given environmental parameter through
normalization of the sensor data.

1.2.4 Input Adaptation (Chapter 7)

Problem: To improve the performance of an IU algorithm by adapting its input data to the
desired form so that it is optimal for the given algorithm.

Approach: Two general methodologies for the performance improvement of an IU system
are based on optimization of algorithm parameters and adaptation of the input. Unlike
the genetic learning case for adaptive image segmentation, here we focus on the second
methodology and use modified Hebbian learning rules to build adaptive feature extractors
which transform the input data into the desired form for a given algorithm. Learning
rules are based on different loss functions and are suitable for extracting expressive or
discriminating features from the input.

Accomplishments: The feasibility of the approach is shown by designing an input adaptor
for a thresholding algorithm for target detection using SAR and FLIR images. The results
are excellent with input adaptor compared to the case with no input adaptor.

Future Work: (a) Develop transformations from input data to salient features needed
for various classes of algorithms, (b) Compare performance with/without input adaptor for
algorithms used in applications such as automatic target recognition and navigation.

1.2.5 Learning Recognition Strategies(Chapter 8)

Problem: To automate acquisition of recognition strategies in dynamic environments.

Approach: Most current model-based approaches to object recognition utilize geometric

descriptions of object models, i.e., they emphasize the recognition problem as a character-
istic of individual object models only. Various other factors, however, may influence the
outcome of recognition in a real application such as photointerpretation. These factors in-
clude contextual information, sensor type, target type, scene models, and other non-image
information. Using Case-Based Reasoning (CBR), successful recognition strategies (contex-
tual information, algorithms, features, parameters, etc.) are stored in memory as cases and
are used to solve new problems.

Since there are no algorithms that show acceptable performance over all different image
sets that can be input to a system, we categorize images into classes and find the best
algorithm for each class. When new image is provided to recognize an object such as a
particular aircraft type, the new image is first categorized into the most similar class and
then processed using the best algorithm known beforehand.

Categorization of images is, however, a very difficult problem. Instead of categorizing
an image, a region of interest (ROI) is classified. For training images, ROIs are acquired
and divided into classes by a human operator. The best algorithm is also selected by a
human operator during training. Once images are categorized, characteristics of image
sets are compiled statistically. These compiled probability distributions of values for each
characteristic feature are utilized to find the most similar class. Characteristic features fall
into two categories: contextual information and pure image metrics information. Weather,
time of image acquisition, and viewing angles are proposed as contextual information. Ho-
mogeneity factor, convexity factor, and agglomeration factor are suggested as pure image
metrics information.

Accomplishments: We have developed the basic elements of the CBR paradigm. We
have experimented extensively with a C-based algorithms for aircraft recognition in aerial
photographs. We have written code for characterizing image data sets.

Future Work: (a) Develop a prototype system which will have all the basic elements of
CBR. (b) Select the best image metrics based on the discriminating power for categorizing
images, (c) Develop reasoning, adaptation and indexing approaches that will make CBR
an effective approach for IU applications.

1.2.6 Learning Composite Visual Concepts(Chapter 9)

Problem: Current grouping techniques use only perceptually motivated, low-order geomet-
rical relationships but no object model information, to assemble simple features of the same
type. As a result, the full potential of grouping for solving the indexing problem has not
been realized.

Approach: Discover groups that have both a simple description and are distinctive for
indexing into the model database, using a variant of explanation-based learning. The use
of a two-stage grouping strategy combines domain-independent perceptual grouping and
model-based grouping with a database of high-order structural arrangements.

Accomplishments: We have specified the goals, prerequisites, and preliminary formalism
for "inventing" significant structural groupings from multi-class primitives.

Future Work: Implement the approach and evaluate its effectiveness for grouping in
various task domains.

1.3 Publications(l October 95 and 31 December 96)

1.3.1 Published

1. B. Bhanu, S. Lee and J. Ming, "Adaptive Image Segmentation Using a Genetic Al-
gorithm," IEEE Transactions on Systems, Man and Cybernetics, Vol. 25, No. 12, pp.
1543-1567, December 1995.

2. B. Bhanu, S. Lee and S. Das, "Adaptive Image Segmentation Using Genetic and
Hybrid Search Methods," IEEE Transactions on Aerospace and Electronic Systems, Vol.
31, No. 4, pp. 1268-1291, October 1995.

3. B. Bhanu, X. Wu, and S. Lee, "Genetic Algorithms for Adaptive Image Segmen-
tation," Chapter 11, in "Early Visual Learning" Edited by S. Nayar and T. Poggio, pp.
269-298, Oxford University Press, 1996.

4. S. Rong and B. Bhanu, "Modeling Clutter and Context for Target Detection in
Infrared Images," IEEE Conference on Computer Vision and Pattern Recognition, San
Francisco, CA, pp. 106-113, June 16-20, 1996.

5. J. Peng and B. Bhanu, "Closed-Loop Object Recognition Using Reinforcement Learn-
ing," IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA,
pp. 538-543, June 16-20, 1996.

6. Y. Zheng and B. Bhanu, "Adaptive Object Detection Based on Modified Hebbian
Learning," International Conference on Pattern Recognition, Vienna, Austria, August 25-
30,1996.

7. J. Peng and B. Bhanu, "Delayed Reinforcement Learning for Closed-Loop Object
Recognition," Proc. International Conference on Pattern Recognition, Vienna, Austria,
Oct. 26-29 August 1996.

8. S. Rong and B. Bhanu, "Reinforcement Learning for Integrating Context with Clutter

Models for Target Detection," Proc. ARPA Image Understanding Workshop, Palm Springs,
CA, pp. 1389-1394, February 12-16, 1996.

9. J. Peng and B. Bhanu, "Delayed Reinforcement Learning for Closed-Loop Object
Recognition," Proc. ARPA Image Understanding Workshop, Palm Springs, CA, pp. 1429-
1436, February 12-16, 1996.

10. Y. Zheng and B. Bhanu, "Performance Improvement by Input adaptation Using
Modified Hebbian Learning," Proc. ARPA Image Understanding Workshop, Palm Springs,
CA, pp. 1381-1388, February 12-16, 1996.

11. B. Bhanu, "Image Understanding Research at UC Riverside: Robust Recognition
of Objects in Real-World Scenes," Proc. ARPA Image Understanding Workshop, Palm
Springs, CA, pp. 117-128, February 12-16, 1996.

1.3.2 Accepted but not yet published

1. J. Ming and B. Bhanu, "A Multistrategy Learning Approach for Target Model Recogni-
tion, Acquisition and Refinement," Int. J. on Pattern Recognition and Artificial Intelligence.

1.3.3 Submitted but not yet accepted

1. J. Peng and B. Bhanu, "Delayed Reinforcement Learning for Closed-Loop Object Recog-
nition," IEEE Trans, on Systems, Man and Cybernetics, (Revised).

3. J. Peng and B. Bhanu, "Robust Image Segmentation Using Reinforcement Learning,"
IEEE Trans, on Pattern Analysis and Machine Intelligence, (Revised).

4. Y. Zheng and B. Bhanu, "Adaptive Object Detection From Multisensor Data," IEEE
Trans, on Systems, Man and Cybernetics, June 1996.

5. Y. Zheng and B. Bhanu, "Adaptive Object Detection From Multisensor Data,"
IEEE International Conference on Multisensor Fusion and Integration of Intelligent Sys-
tems, Washington, D.C., Dec. 8-11, 1996.

6. S. Das and B. Bhanu, "Computational Vision: A Learning Perspective," Submitted
to ACM Computing Surveys, (Under Revision).

1.4 Interactions/Transitions

1.4.1 Participation/presentations at meetings, conferences, seminars

Presented papers at the DARPA Image Understanding Workshop, Feb. 1996; IEEE Conf.
on Computer vision and Pattern Recognition, June 1996; International Conf. on Pattern
Recognition, Aug. 1996.

1. Chair, IEEE Conference on Computer Vision and Pattern Recognition, San Francisco,
CA, June 1996.

2. ARPA Image Understanding Workshop, Palm Springs, CA, Feb. 12-16, 1996.

3. Program Committee, International Workshop on Structural and Syntactic Pattern
Recognition (SSPR'96), Leipzig, Germany, August 20-23, 1996.

4. Program Committee, SPIE Conference on Neural Network Applications to Image
Processing, San Jose, February 1996.

5. Program Committee, Second International Conference on Multisensor Fusion and
Integration for Intelligent Systems, Dec. 8-11, 1996, Washington, D.C.

1.4.2 Consultative and advisory functions

Edited a special issue of IEEE Trans, on Image Processing on Automatic Target Detection
and Recognition (with Ed Zelnio of WRDC; Dan Dudgeon of MIT Lincoln Lab; Azriel
Rosenfeld of Univ. of Maryland, David Casasent of Carnegie Mellon University; and Irving
Reed of Univ. of Southern California). (To be Published Jan. 1997)

1.4.3 Transitions

(i) Honeywell Inc. is using genetic algorithm for adapting algorithms to multiscenarios in
the RSTA (Reconnaissance, Surveillance and Target Acquisition) Program from DARPA.

Genetic learning is also being used in the focus-of-attention module for image segmen-
tation/labeling (in the MSTAR program of ARPA).

Our publications (papers, patent and book) were the first in this area.

(ii) Our research on closed-loop object recognition and context reinforced clutter char-
acterization using reinforcement learning will be useful for target detection, training on the
fly, model acquisition, and exploitation of SAR/FLIR images for adapting image under-
standing algorithms to sensor operating conditions and deployment environments, as well

as performance characterization of image understanding systems for image exploitation in
the context of battlefield awareness concept pursued by the DOD.

We expect our research to contribute to the SAIP ACTD and MSTAR programs from
DARPA and WRDC.

1.5 New discoveries, inventions, or patent disclosures

We have developed some novel techniques and we have some results for context reinforced
ATR using learning techniques. These results have yet to be validated on a larger dataset.

Chapter 2

Closed-Loop Object Recognition
Using Reinforcement Learning

Current computer vision systems whose basic methodology is open-loop or filter type typi-
cally use image segmentation followed by object recognition algorithms. These systems are
not robust for most real-world applications. In contrast, the system presented here achieves
robust performance by using reinforcement learning to induce a mapping from input images
to corresponding segmentation parameters. This is accomplished by using the confidence
level of model matching as a reinforcement signal for a team of learning automata to search
for segmentation parameters during training. The use of the recognition algorithm as part
of the evaluation function for image segmentation gives rise to significant improvement of
the system performance by automatic generation of recognition strategies. The system is
verified through experiments on sequences of indoor and outdoor color images with varying
external conditions.

2.1 Introduction

Image segmentation, feature extraction and model matching are the key building blocks of
a computer vision system for model-based object recognition [18, 87]. The tasks performed
by these building blocks are characterized as the low (segmentation), intermediate (feature
extraction) and high (model matching) levels of computer vision. The goal of image seg-
mentation is to extract meaningful objects from an image. It is essentially a pixel-based
processing. Model matching uses a representation such as shape features obtained at the
intermediate level for recognition. It requires explicit shape models of the object to be rec-

10

ognized. There is an abstraction of image information as we move from low to high levels
and the processing becomes more knowledge based or goal directed.

Although there is an abundance of proposed computer vision algorithms for object recog-
nition, there have been few systems that achieve good performance for practical applications,
for most such systems do not adapt to changing environments [10]. The main difficulties,
typically associated with systems that are mostly open-loop or filter type, can be charac-
terized as follows.

1. The fixed set of parameters used in various vision algorithms often leads to ungraceful
degradation in performance.

2. The image segmentation, feature extraction and selection are generally carried out as
preprocessing steps to object recognition algorithms for model matching. These steps
totally ignore the effects of the earlier results (image segmentation, feature extraction,
and model matching) on the future performance of the recognition algorithm.

3. Generally the criteria used for segmentation and feature extraction require elaborate
human designs. When the conditions for which they are designed are changed slightly,
these algorithms fail. Furthermore, the criteria themselves can be a subject of debate

[12].

4. Object recognition is a process of making sequences of decisions, i.e., applying vari-
ous image analysis algorithms. Often the usefulness of a decision or the results of an
individual algorithm can only be determined by the final outcome (e.g. matching con-
fidence) of the recognition process. This is also known as "vision-complete" problem
[17], i.e., one cannot really assign labels to the image without the knowledge of which
parts of the image correspond to what objects.

This paper presents a learning based vision framework in which the above problems
can be adequately addressed. The underlying theory is that any recognition system whose
decision criteria for image segmentation and feature extraction, etc. are developed au-
tonomously from the outcome of the final recognition might transcend all these problems.
A direct result of the theory is that the low and high level components of a vision system
must interact to achieve robust performance under changing environmental conditions. Our
system accomplishes this by incorporating a reinforcement learning mechanism to control
the interactions of different levels within it. Specifically, the system takes the output of the
recognition algorithm and uses it as a feedback to influence the performance of the segmen-
tation process. As a result, the recognition performance can be significantly improved over
time with this method.

11

One attractive feature of the approach is that it includes the matching or recognition
component as part of the evaluation function for image segmentation in a systematic way.
An additional strength is that the system develops its independent decision criteria (segmen-
tation parameters) to best serve the underlying recognition task. It should be emphasized
that our interest is not in a simple mixture of learning and computer vision, but rather
in the principled integration of the two fields at the algorithmic level. Note that the goal
here is to seek a general mapping from images to parameter settings of various algorithms
based on recognition results. To our knowledge, however, no such approach exists in the
computer vision field. Also there is no work in the neural network field (e.g., application of
Neocognition [27]) for parameter adaptation of segmentation algorithms [12].

This work is most closely related to the work by Bhanu et al. [12, 13, 14], where
they describe a system that uses genetic and hybrid algorithms for learning segmentation
parameters. However, the recognition algorithm is not part of the evaluation function
for segmentation in their system. The genetic or hybrid algorithms simply search for a
set of parameters that optimize a prespecified evaluation function (based on global and
local segmentation evaluation) that may not best serve the overall goal of robust object
recognition. Furthermore, the papers assume that the location of the object in the image
is known for specific photointerpretation application. In our work, we do not make such
an assumption. We use explicit geometric model of an object, represented by its polygonal
approximation, to recognize it in the image.

In addition, Wang and Binford [91] and Ramesh [69] have investigated statistical meth-
ods for performance evaluation and tuning free parameters of an algorithm. Wang and
Binford [91] presented a theoretical analysis for edge estimation and showed how one can
select the gradient threshold (tuning parameter) for edge detection. Ramesh [69] has de-
veloped a methodology for the analysis of computer vision algorithms and systems using
system engineering principles. To characterize the performance of an algorithm he developed
statistical models for ideal image features (such as edges, corners) and random perturba-
tions at input/output of an algorithm. Additionally, prior distributions for image features
are also obtained. Using these models and a criterion function, he can characterize the
performance of a given algorithm as a function of tuning parameters and determine these
parameters automatically. Our approach presented in this paper differs significantly from
Ramesh's [69] approach, (a) Ramesh's approach is open loop, our approach is closed loop.
In our approach recognition results determine how the segmentation parameters should be
changed, (b) Ramesh is tuning the parameters of an individual algorithm - it is known
that the optimization of individual components does not necessarily gives the optimal re-
sults for the system. We are working with a complete recognition system (segmentation,
feature extraction and model matching components) and improving the performance of the
complete system, (c) Ramesh builds elaborate statistical models (using the training data)

12

that require complex processes of annotation and approximating the measured distributions
with mathematical functions to be used later. Our learning approach does not build explicit
statistical models. It uses geometrical models during model matching, (d) It is relatively
easier to build statistical models for algorithms like edge and corner detection. For complex
algorithms like Phoenix it is difficult to model the "perfect" algorithm behavior analytically
since the performance of segmentation depends nonlinearly with the changes in parameter
values and there are some heuristics used in the algorithm. Considering the above factors
our approach is more general for the problem that we are trying to solve. We have developed
a learning based approach presented in this paper.

Section 2.2 describes a general framework for reinforcement learning-based adaptive im-
age segmentation. Section 2.3 describes the reinforcement learning paradigm and the par-
ticular reinforcement learning algorithm employed in our system. Section 2.4 presents the
experimental results evaluating the system and section 2.5 concludes the paper. Two ap-
pendices describe the basic segmentation and model matching algorithms used to perform
experiments for closed-loop object recognition using reinforcement learning.

2.2 Reinforcement Learning System for Segmentation
Parameter Estimation

2.2.1 The Problem

Consider the problem of recognizing an object in an input image, assuming that the model of
the object is given and that the precise location of the object in the image is unknown. The
conventional method, shown in Figure 2.1, for the recognition problem is to first segment
the input image, then extract and select appropriate features from the segmented image,
and finally perform model matching using these features. If we assume that the matching
algorithm produces a real valued output indicating the degree of success upon its completion,
then it is natural to use this real valued output as feedback to influence the performance of
segmentation and feature extraction so as to bring about system's earlier decisions favorable
for more accurate model matching. The rest of the paper describes a reinforcement learning-
based vision system to achieve just that.

2.2.2 Learning to Segment Images

Our current investigation into reinforcement learning-based vision systems is focused on
the problem of learning to segment images. An important characteristic of our approach is
that the segmentation process takes into account the biases of the recognition algorithm to

13

"™

Default Parameters)

Mod*» Matching

('Mc

.

Feaf«re Cstraatoa

!;:;:::;S^^f!1ttd(tfMk:;:;:;:; Default Parameters)

delj) (Input Image)

Figure 2.1: Conventional multi-level system for object recognition.

develop its own decision strategies. A consequence of this is that the effective search space
of segmentation parameters can be dramatically reduced. As a result, more accurate and
efficient segmentation and recognition performance can be expected.

Image Segmentation

We begin with image segmentation [40] because it is an extremely important and difficult
low-level task. All subsequent interpretation tasks including object detection, feature ex-
traction, object recognition and classification rely heavily on the quality of the segmentation
process. The difficulty arises for image segmentation when only local image properties are
used to define the region-of-interest for each individual object. It is known [10, 24] that
correct localization may not always be possible. Thus, a good image segmentation cannot
be done by grouping parts with similar image properties in a purely bottom-up fashion.
Difficulties also arise when segmentation performance needs to be adapted to the changes
in image quality, which is affected by variations in environmental conditions, imaging de-
vices, lighting, etc. The following are the key characteristics [12] of the image segmentation
problem: (1) When presented with a new image, selecting the appropriate set of algorithm
parameters is the key to effectively segmenting the image. (2) The parameters within most
segmentation algorithms typically interact in a complex, non-linear fashion, which makes it
difficult to model the parameters' behavior analytically. (3) The variations between images
cause changes in the segmentation results, the objective function that represents segmenta-
tion quality varies from image to image. Also, there may not be a consensus on segmentation

14

Confidence Level for Matching

Ü^^^S

?*«m» Ex*««*« "

^^Üj^^^^^^^ +-C Parameters)
. ,

Figure 2.2: Reinforcement learning-based multi-level system for object recognition.

quality measures.

Our Approach

Each combination of segmentation parameters produces, for a given input, an unique seg-
mentation image from which a confidence level of model matching can be computed. The
simplest way to acquire high pay-off parameter combinations is through trial and error.
That is, generate a combination of parameters, compute the matching confidence, generate
another combination of parameters, and so on, until the confidence level has exceeded a
given threshold. Better yet, if a well-defined evaluation function over the segmentation pa-
rameter space is available, then local gradient methods, such as hill-climbers, suffice. While
the trial-and-error methods suffer from excessive demand for computational resources, such
as time and space, the gradient methods suffer from the unrealistic requirement for an eval-
uation function. In contrast, reinforcement learning performs trials and errors, yet does not
demand excessive computational resources; it performs hill-climbing in a statistical sense,
yet does not require an evaluation function. In addition, it can generalize over unseen images
as we shall see later. Furthermore, it can be easily adapted to multi-level computer vision
systems. It is also feasible to construct fast, parallel devices to implement this technique
for real-time applications. It thus fits our goal nicely here.

Figure 2.2 depicts the conceptual diagram of our reinforcement learning-based object
recognition system that addresses the parameter selection problem encountered in image
segmentation task by using the recognition algorithm itself as part of the evaluation func-
tion for image segmentation. Note that the reinforcement learning component employs a

15

particular reinforcement learning algorithm that will be described in the next section. Fig-
ure 2.3 shows the main steps of the algorithm we use, where the algorithm terminates when
either the number of iterations reaches a prespecified value (N) or the average matching
confidence over entire training data (denoted by rr) has exceeded a given threshold, called
Rth- Note that n denotes the number of images in the training set. In the event that the
number of iterations has exceeded N, we will say that the object is not present in the image.
Also for simplicity we assume that only one instance of the model is present in the image.
Multiple instances of the model can be recognized by slight modification of the algorithm.

2.3 Reinforcement Learning

In this section we begin with a brief overview of the reinforcement learning technique. We
then describe reinforcement learning algorithms applicable to our task and the modifications
of these algorithms to effectively solve the problem identified in section 2.2.1.

LOOP:

1. rr = 0 (rr: average matching confidence)
2. For each image i in the training set do

(a) Segment image i using current segmentation parameters
(b) Perform noise clean up
(c) Get segmented regions (also called blobs or connected components)
(d) Perform feature extraction for each blob to obtain token sets
(e) Compute the matching of each token set against stored model and return

the highest confidence level, r
(f) rr = rr + r

(g) Obtain new parameters for the segmentation algorithm using r as rein-
forcement for the reinforcement learning algorithm

UNTIL number of iterations is equal to N or rr/n > Rth

Figure 2.3: Main Steps of the Reinforcement Learning-Based Object Recognition Algorithm.

Reinforcement learning is an important machine learning paradigm. It is a framework
for learning to make sequences of decisions in an environment [6]. It is distinct from super-
vised learning, like the popular backpropagation algorithm, in that feedback it receives is
evaluative instead of instructive. That is, for supervised learning the system is presented
with the correct output for each input instance, while for reinforcement learning the system

16

produces a response that is then evaluated using a scalar indicating the appropriateness of
the response. As an example, a checker playing computer program that uses the outcome of
a game to improve its performance is a reinforcement learning system. Knowledge about an
outcome is useful for evaluating the total system's performance, but it says nothing about
which actions were instrumental for the ultimate win or loss. In general, reinforcement
learning is more widely applicable than supervised learning since any supervised learning
problem can be treated as a reinforcement learning problem.

In the reinforcement learning framework, a learning system is given, at each time step,
inputs describing its environment. The system then makes a decision based on these inputs,
thereby causing the environment to deliver to the system a reinforcement. The value of this
reinforcement depends on the environmental state, the system's decision, and possibly ran-
dom disturbances. In general, reinforcement measuring the consequences of a decision can
emerge at a multitude of times after a decision is made. A distinction can be made between
associative and non-associative reinforcement learning. In the non-associative paradigm,
reinforcement is the only information the system receives from its environment. Whereas,
in the associative paradigm, the system receives input information that indicates the state
of its environment as well as reinforcement. In such learning systems, a "state" is a unique
representation of all previous inputs to a system. In computer vision, this state informa-
tion corresponds to current input image. Our object recognition applications require us to
take into account the changes appearing in the input images. The objective of the system
is to select sequences of decisions to maximize the sum of future reinforcement (possibly
discounted) over time. It is interesting to note that for a given state an associative rein-
forcement learning problem becomes a non-associative learning problem.

As noted above, a complication to reinforcement learning is the timing of reinforcement.
In simple tasks, the system receives, after each decision, reinforcement indicating the good-
ness of that decision. Immediate reinforcement occurs commonly in function optimization
problems. In more complex tasks, however, reinforcement is often temporally delayed, oc-
curring only after the execution of a sequence of decisions. Delayed reinforcement learning
is important because in many problem domains, immediate reinforcement regarding the
value of a decision may not always be available. For example, in object recognition, the
goodness of segmentation is not known until the recognition decision has been made. De-
layed reinforcement learning is attractive and can play an important role in computer vision
[66]. Because delayed reinforcement learning does not concern us here, we do not discuss
this subject further.

In this paper, we instead concentrate on the immediate reinforcement learning paradigm,
for it provides a simple, yet principled framework within which the main problems identified
above can be properly addressed. It also serves as a stepping stone for better understanding

17

of the issues involved in computer vision that need to be addressed by delayed reinforcement
learning [66]. A well-understood method in immediate reinforcement learning is the RE-
INFORCE algorithm [93], a class of connectionist reinforcement learning algorithms, that
performs stochastic hill-climbing, and which is the subject of our paper.

2.3.1 Connectionist Reinforcement Learning

The particular class of reinforcement learning algorithms employed in our object recognition
system is the connectionist REINFORCE algorithm [93], where units in such a network
(depicted by the picture on the left in Figure 2.4) are Bernoulli quasilinear units, in that
the output of such a unit is either 0 or 1, determined stochastically using the Bernoulli
distribution with parameter p = f(s), where / is the logistic function,

/(s) = l/(l + exp(-5)) (2.1)

and s = Yli wixi is the usual weighted summation of input values to that unit. For such a
unit, p represents its probability of choosing 1 as its output value. The picture on the right
in Figure 2.4 depicts the ith unit.

with
with

Pi
1- Pi

\

Random Number
Generator

M
„._..„

Si=ZW|jX,

4t

xi

Figure 2.4: Left: Connectionist reinforcement learning system. Right: Bernoulli quasilinear unit.

In the general reinforcement learning paradigm, the network generates an output pattern
and the environment responds by providing the reinforcement r as its evaluation of that
output pattern, which is then used to drive the weight changes according to the particular

18

reinforcement learning algorithm being used by the network. For the Bernoulli quasilinear
units used in this research, the REINFORCE algorithm prescribes weight increments equal
to

Awij = a(r - b) (y; - pi)xj (2.2)

where a is a positive learning rate, b serves as a reinforcement baseline, Xj is the input to
each Bernoulli unit, j/2- is the output of the zth Bernoulli unit, and pi is an internal parameter
to a Bernoulli random number generator (see equation 2.1). Note that i takes values from
1 to n and j from 1 to m, where n and m are the number of the units in the network and
the number of input features, respectively.

It can be shown [93] that, regardless of how b is computed, whenever it does not depend
on the immediately received reinforcement value r, and when r is sent to all the units in
the network, such an algorithm satisfies

£{AW|W} = aVwE{r\W} (2.3)

where E denotes the expectation operator, W represents the weight matrix (n x (m+ 1),
m + 1 because of m inputs plus a bias) of the network, and AW is the change of the
weight matrix. A reinforcement learning algorithm satisfying (2.3) has the property that the
algorithm statistically climbs the gradient of expected reinforcement in weight space. That
is, the algorithm is guaranteed to converge to a local optimum. For adapting parameters
of the segmentation algorithm, it means that the segmentation parameters change in the
direction along which the expected matching confidence increases. The next two subsections
describe the particular network and the algorithm used in this paper.

2.3.2 The Team Architecture

We use a very simple form of trial generating network in which all of the units are output
units and there are no interconnections between them. This degenerate class of network
corresponds to what is called a team of automata in the literature on stochastic learning
automata [58]. We, therefore, call these networks as teams of Bernoulli quasilinear units.
Figure 2.5 depicts the team network used here, which corresponds directly to the reinforce-
ment learning component in Figure 2.2. Each segmentation parameter is represented by a
set of Bernoulli quasilinear units and the output of each unit is binary as we have described
earlier.

For any Bernoulli quasilinear unit, the probability that it produces a 1 on any particular
trial given the value of the weight matrix W is

Pr {yi = 1| W} = Pi = f(Si) = T-p^r

19

I New Parameters

Segmentation Parameter 1 Segmentation Parameter n

TEAM OF BERNOULLI QtJASILINEAR UNITS

Input Image r = Confidence Level

Figure 2.5: Team of Bernoulli units for learning segmentation parameters.

where s; = Ylj wijxj- Because all units pick their outputs independently, it follows that for
such a team of Bernoulli quasilinear units the probability of any particular output vector
y(t), corresponding to an instance of segmentation parameters, conditioned on the current
value of the weight matrix W is given by

Pr {y|W}= n Pf(l-Pi) 1-3K (2.4)
i£{l,-,n}

The weights Wij are adjusted according to the particular learning algorithm used. We
note that when s; = 0 and hence pi = 0.5, the unit is equally likely to pick yi either 0 or
1, while increasing s,- makes a 1 more likely. Adjusting the weights in a team of Bernoulli
quasilinear units is thus tantamount to adjusting the probabilities (p,-'s) for individual units.

Note that, except bias terms, there are no input connections in the team networks
experimented in [94]. In contrast, the team network used in this paper does have input
weights that play the role of long-term memory in associative learning tasks.

2.3.3 The Team Algorithm

The specific algorithm we used with the team architecture has the following form: At the tth

time step, after generating output y(t) and receiving reinforcement r(t), i.e., the confidence

20

level indicating the matching result, increment each weight Wij by

Awij(t) = a{r{t) - r(t - l))(yi(t) - fc(i - l))Xj - SWij(t) (2.5)

where a, the learning rate, and 6, the weight decay rate, are parameters of the algorithm.
The term (r(t) - r(t - 1)) is called the reinforcement factor and (y;(t) - y,-(i - 1)) the
eligibility of the weight Wij [93]. Generally, the eligibility of a weight indicates the extent
to which the activity at the input of the weight was connected in the past with unit output
activity. Note that this algorithm is a variant of the one described in equation (2.2), where
b is replaced by r and pi by y,-.

r(t) is the exponentially weighted average, or trace, of prior reinforcement values

r(t) = 7r(t - 1) + (1 - y)r(t) (2.6)

with 7(0) = 0. The trace parameter j was set equal to 0.9 for all the experiments reported
here. Similarly y~i(t) is an average of past values of y,- computed by the same exponential
weighting scheme used for r. That is,

&■(*) = 7ä(t-i) + (i-7)y.-(«)- (2-7)

Note that equation (2.3) does not depend on the eligibility. However, empirical study shows
superior performance with this form of eligibility for function optimization [94].

The use of weight decay is chosen as a simple heuristic method to force sustained explo-
ration of the weight space since it was found that REINFORCE algorithms without weight
decay always seemed to converge prematurely. It is argued in [94] that having weight decay
(the second term Swij(t) in Equation (2.5)) is very closely related to having a nonzero mu-
tation rate at a particular allele (feature value) in a genetic algorithm [33]. The size of the
weight decay rate S was chosen to be 0.01 in all our experiments. Note that there are other
ways to force sustained exploration. One possibility is to maximize a linear combination
of system's entropy and reinforcement. We omit here the detailed analysis of the method
except commenting that such a strategy seeks not only a particular region of the space
having high reinforcement values, but also a variety of such high value regions.

2.3.4 Implementation of the Algorithm

A different training strategy from that described in Figure 2.3 was used in the experiments
reported here. Instead of looping through every image in the training set, the training
procedure samples images proportional to the level of matching confidence the current
system achieves. That is, the lowerer the matching confidence the system gets on an image,

21

• LOOP:

1. For each image i in the training set do
(a) Compute matching confidence for image i: CONFIDi

(b) m = MAXCON FID-CONFIDi

(c) If Y^i ni is 0, then terminate.
(d) proportiorii = ^=?^—

2. rr = 0 (rr: average matching confidence)
3. For k = 1 to n do

(a) Sample image i according to proportiorii

(b) Segment image i using current segmentation parameters
(c) Perform noise clean up

(d) Get segmented regions (also called blobs or connected components)
(e) Perform feature extraction for each blob to obtain token sets

(f) Compute the matching of each token set against stored model and return
the highest confidence level, r

(g) Obtain new parameters for the segmentation algorithm using r as rein-
forcement for the team REINFORCE algorithm

(h) rr = rr + r

• UNTIL number of iterations is equal to N or rr/n > Rth

Figure 2.6: Main Steps of the Proportional Training Algorithm.

the more likely the image will be sampled. In this way training is focused on those images
having the lowest matching confidence, and thus faster performance improvement can be
achieved. A similar technique is also adopted in [23]. Figure 2.6 shows the main steps
of the proportional training algorithm, where MAXCONFID (=1 in this paper) is the
maximum confidence level the system can achieve, i.e., when a perfect matching occurs, n
is the number of images in the training set, and N and Rth are input parameters to the
algorithm.

2.4 Experimental Results

This section describes experimental results evaluating the performance of our system on a
variety of data, including two sets of color images, one of which is indoor and the other
is outdoor, and a large set of simulated data. The system has been implemented on a

22

SUN Ultra-1 workstation. It takes about 6 seconds to complete an iteration on a 120
by 160 image, roughly 15% of which is taken by the Phoenix algorithm. Programming
optimizations can reduce the expense per iteration further.

The Phoenix algorithm [46] was chosen as the image segmentation component in our
system because it is a well-known method for the segmentation of color images with a
number of adjustable parameters. It has been the subject of several Ph.D. theses [59, 84].
Phoenix works by splitting regions using histogram for color features. Appendix A provides
a brief overview of the algorithm. Note that any segmentation algorithm with adjustable
parameters can be used in our approach.

The Phoenix algorithm has a total of fourteen adjustable parameters. The four most
critical ones that affect the overall results of the segmentation process are used in learning.
These parameters are Hsmooth, Maxmin, Splitmin, and Height. Hsmooth is the width of
the histogram smoothing window, where smoothing is performed with a uniformly weighted
moving average. Maxmin defines the peak-to-valley height ratio threshold. Any interval
whose peak height to higher shoulder ratio is less than this threshold is merged with the
neighbor on the side of the higher shoulder. Splitmin defines the minimum size for a region
to be automatically considered for splitting. This is an absolute value, not a percentage
of the image area. Height is the minimum acceptable peak height as a percentage of the
second highest peak. The team algorithm searches for a combination of these parameters
that will give rise to a segmentation from which the best recognition can be achieved. The
ranges for each of these parameters are the same as those used in [12]. Table 2.1 shows
sample ranges for each of these parameters. The resulting search space is about one million
sample points.

Table 2.1: Sample ranges for selected Phoenix parameters.

Parameter Sampling Formula Test Range

Hsmooth:
hsindex G [0 : 31]

hsmooth=l + 2 * hsindex 1-63

Maxmin:
mmindex G [0 : 31]

ep=ln(100) + 0.05 * mmindex
maxmin = exp(ep) + 0.5

100 - 471

Splitmin:
smindex G [0 : 31]

splitmin=9 + 2 * smindex 9-71

Height:
htindex G [0 : 31]

height=l + 2 * htindex 1-63

Each of the Phoenix parameters is represented using 5 bit Gray code that has the ad-
vantage over simple binary code in that only one bit changes between representations of

23

two consecutive numbers. One reason for using the binary representation is its usefulness
as a model of certain types of distributed adaptive decision-making [93]. Another reason is
that it offers a combinatorially advantageous way of approaching learning problems having
a large search space. While the same task could be learned in the original parameter space,
for many types of problems, including image segmentation, the binary representation can be
expected to learn much faster. Since there are 4 parameters, we have a total of 20 Bernoulli
quasilinear units and each parameter corresponds to the outputs of 5 units.

The feature extraction consists of finding polygon approximation tokens for each of the
regions obtained after image segmentation. The polygon approximation is obtained using
a split and merge technique [15] that has a fixed set of parameters.

Object recognition employs a cluster-structure matching algorithm [15] that is based on
the clustering of translational and rotational transformations between the object and the
model for recognizing 2-D and 3-D objects. A breif description of the algorithm is given
in Appendix B. The algorithm takes as input two sets of tokens, one of which represents
the stored model and the other represents the input region to be recognized. It then
performs topological matching between the two token sets and computes a real number
that indicates the confidence level of the matching process. This confidence level is then
used as a reinforcement signal to drive the team algorithm.

It is important to note that, in the current implementation of the system, the cluster-
structure matching algorithm does not have the knowledge of actual object location in the
image. It simply attempts to match the stored model against the polygonal approximation
of each blob in the segmented image whose size is at least 80% of the size of the model, and
at the same time does not exceed it by more than 20%. The confidence level returned is
the highest value ever obtained during matching.

It is worth pointing out that, during learning, the weights are updated after each presen-
tation of an input image. This is in direct analogy to the typical weight update procedure
in connectionist networks where weights are updated according to the stochastic gradient
or incremental procedure instead of the total gradient rule [47]. That is, updates take place
after each presentation of a single exam pier without averaging over the whole training set.
Both empirical and theoretical studies show that the stochastic gradient rule converges sig-
nificantly faster than the total gradient rule, especially when training set contains redundant
information.

Parameters (a, 7, and 6) used in reinforcement learning are determined empirically, and
they are kept constant for all images. It is interesting to note that in theory the convergence
of the algorithm to a local optimum does not depend on 7 and S. In practice, however,
these learning parameters do affect the speed of convergence, as shown by various empirical
studies conducted by several researchers [88, 93, 94], including us. Likewise, a has to be

24

chosen sufficiently small to prevent oscillation and ensure convergence. The experimental
tests performed by us showed that once the algorithm has achieved convergence many of
these parameter values give rise to good segmentation performance, as verified by us visually.
The initial parameter values for the Phoenix algorithm are chosen at random. We expect,
however, that the good starting values of the segmentation parameters affect the convergence
rate. Finally, as a comparison, the segmentation results with the Phoenix algorithm using
default parameters [46] are also obtained for feature extraction and recognition on the same
tasks.

2.4.1 Results on Indoor Images

HpfiffM

:$PP?? H mm

(a) (b) (c)

sUt'^i&i^H

IIP %g§pllfl

(g) 00 (i)

Ü) (k) (1)

Figure 2.7: Twelve color images having simple geometric objects.

25

The first segmentation task whose experimental results we report here is a sequence of
indoor color images (160 by 120 pixels) having simple geometric objects with varying lighting
and motion conditions. These images are shown in Figure 2.7, where, from left to right,
images are moving away from the camera, and within each column, lighting conditions
deteriorate from top to bottom. The training set consists of the images 2.7(c), (h), (k),
and (1) (randomly selected), whereas the testing data come from the rest of the images (8
images). The objective of the task is to find a set of Phoenix's parameters that give rise to a
segmentation of the input image that, after appropriate feature extraction, will result in the
recognition of the triangular object. The model of the triangular object is represented by a
polygonal approximation of its shape. The threshold for matching confidence in this case was
set to 0.8. The learning rate parameter a was set to 0.008 in all the experiments. Note that,
unlike previous work on image segmentation, the criteria measuring image segmentation
quality here are completely determined by the matching algorithm itself.

Each unit in the team network has a total of 8 input weights. In the first experiment
each of the input weights takes an average grey value of input on a 60 by 40 neighborhood
on the input image plane of 120 by 160 pixels. This input image is the luminance image of
the corresponding color image. Note that in this experiment the average is normalized to lie
between -1 and 1. For weights that are adjacent in a unit, their receptive fields are at least
40 pixels apart in the input image. Thus, the input image is undersampled, which in turn
greatly reduces the number of weights in the network. The motivation is that variations in
lighting need not be adapted with high resolution.

In the second experiment each input image is projected onto the subspace spanned by
the eight eigenvectors corresponding to eight largest eigen values of the original (luminance)
image vector space (120 by 160 pixels). More specifically, the sample mean vector, /x, is
computed as // = (1/n) YA=I

xi> where n is the number of sample vectors (in this paper n
equals 12) and x denotes mxl column vectors of input images. Note that here m equals
19200. A centered input matrix X is constructed according to

X = (xi - n, x2 - n, ■ ■ •, xn - //).

Then the sample covariance matrix is obtained

C = -^-XX'
n - 1

and its eigensystem is computed, yielding eigenvalues A,-, i = 1, 2, • • •, m, of C in descending
order so that Xj > Xj+1 for j = 1, 2, • • •, m - 1. Let A be a 8 X m matrix whose rows are
formed from the eigenvectors of C, ordered so that the first row of A is the eigenvector
corresponding to the largest eigenvalue, and the last row is the eigenvector corresponding

26

to the 8th largest eigenvalue. Then new inputs are computed according to z = Ax where
z denotes 8x1 column vectors. These inputs are normalized to lie between -1 and 1. Our
goal is to see which method can offer better performance. It turns out that the second
method performed slightly better than the first one, as can be seen below (Figures 2.8 and
2.9). Note that, unless stated otherwise, all the figures in this section are obtained under
the condition that the system takes inputs from the subspace spanned by the first 8 major
axes corresponding to the eight largest eigenvalues of C.

Figure 2.8 shows the segmentation performance (both training and testing) of the Phoenix
algorithm with learned parameters on the images shown in Figure 2.7. The training results
in Figure 2.8 are obtained after a mean value (over 5 runs) of 250 passes through the training
data. Figure 2.9 shows the average confidence (over 5 runs) received by the two methods
(eigen-input and mean-input) over time during training (hillclimber results are explained
below under Computational Efficiency in Section 4.4). Each run consists of a sequence
of trials until the average confidence level has exceeded 0.8. The threshold (0.8) serves
our purpose well here since it is sufficient to demonstrate the effect of learning for object
recognition.

Figure 2.10 shows the trajectory of each of the four Hsmooth, Maxrnin, Splitmin, and
Height parameters during training in a typical run on a particular image (in this case it is
the image (c) of Figure 2.7). Note that no attempt was made to determine if the set of
parameters giving rise to the final recognition is unique.

When the segmentation parameters obtained after training were applied to the images in
the testing set, recognition results for all the images, but 2.7(f), are acceptable. However,
if we include image 2.7(f) in the training set and allow learning to continue, experiments
have been performed that show that successful recognition can be achieved for all testing
images in much less time (less than 50%) compared to the time taken for training on the
original training data.

In comparison, the Phoenix algorithm with default parameter setting was also run on
the same images. Figure 2.11 shows the samples of the segmentation performance of the
Phoenix algorithm with default parameters on the images in the first row of Figure 2.7, i.e,
images 2.7((a)), 2.7(b), and 2.7 (c). These default parameters were obtained after extensive
tests [46]. This default parameter setting resulted in a total matching failure.

2.4.2 Results on Outdoor Images

The second segmentation task involves a sequence of 10 outdoor color images obtained
under varying environmental conditions, two of which are shown in Figures 2.12(a) and
(b). These images are collected approximately every 15 minutes over approximately 2 and

27

(a) (b) (c)

(d) (e) (f)

(g) 00 (i)

Ü) (k) (1)

Figure 2.8: Segmentation performance of the Phoenix algorithm with learned parameters.

1/2 hour period [12]. The images exhibit varying shadow and reflection on the car as the
position of the sun changed and clouds came in and out the field of view of the camera that
had auto iris adjustment turned on. The overall goal is to recognize the car in the image.
The original images are digitized at 480 by 480 pixels in size and are then subsampled to
produce 120 by 120 pixel images. Five of these odd-numbered images are used as training
data and five even-numbered images as testing data.

Similar to the team network for the indoor images, each unit here has a total of 9 input
weights, each of which takes an average gray value of input on a 40 by 40 neighborhood on
the input image plane of 120 by 120 pixels. These averages are normalized to lie between
-1 and 1. Polygonal approximation of the car shown in Figure 2.12(c) is used as the model

28

Figure 2.9: Average confidence received by the three methods over time during training.

in the cluster-structure matching algorithm. It was extracted manually in an interactive
session from the first frame in the sequence.

Figure 2.13 shows a sequence of segmentations for frame 1 with Phoenix's parameters
sampled at iterations 20, 30, 40, 50, 60, and 74 in a particular run during training, and
corresponding parameter values at each of these intervals are shown in Table 2.2. Note that

Table 2.2: Changes of parameter values during training.

Iteration Hsmooth Maxmin Splitmin Height

20 53 135 55 58

30 17 142 39 42

40 21 105 43 24

50 1 165 51 42

60 1 135 19 62

74 1 300 55 64

Figure 2.13(f) shows the final segmentation result when the highest confidence matching
has been achieved. The threshold for acceptable matching confidence is set at 80% because
of the low resolution of the real data.

Figures 2.14(a) and (b) show the Phoenix segmentation performance on two testing
images (frames 2 and 4) with learned parameters obtained after training on frames 1,3,5,
7 and 9. For frame 2 the matching is acceptable. However, for frame 4 the result is not

29

63—1

23
Iterations

(c) (d)

Figure 2.10: Trajectories for a particular run for each of the four parameters Hsmooth, Maxmin,
Splitmin, and Height during training on a particular image (Figure 2.7(g)).

acceptable and learning is to be performed similar to the indoor examples for the adaptation
of parameters.

Finally, Figures 2.14(c) and (d) show the samples of performance of Phoenix with default
parameters on the outdoor color images shown in Figure 2.12. Note that these segmentation
results are totally unacceptable.

2.4.3 Results on a Large Simulated Data Set

The simulated data experiment allows us to examine how the system will behave with a
large data set. We assume the function, F, representing segmentation, feature extraction

30

(a) (b) (c)

Figure 2.11: Samples of segmentation performance of the Phoenix algorithm with default param-
eters on indoor color images (Figures, 2.7(a), 2.7(b) and 2.7(c), respectively).

(a) (b) (c)

Figure 2.12: (a) and (b): Samples of outdoor color images with varying environmental conditions,
(c): Polygon approximation of the car used in the matching algorithm.

and model matching components shown in Figure 2.2, is given by

Fp(x) =]TF£(x), (2.8)

and

fc=o

(fc+l)n/4

F£(x) = 2.5n IJ (I-I^-WD- (2-9)
i=kn/4+l

where p G {0, l}n is a constant. F is a mapping from the n-dimensional hypercube {0, l}n

into the real numbers, where n = 20. Each point x in its domain is an n-dimensional bit

vector.

The function Fp(x) is computed as follows: Divide the 20 bits into four equal-sized
groups. For each group compute a score which is 2.5n if all the bits in that group are the

31

(a) (b) (c)

Figure 2.13: Sequence of segmentations of the first frame during training.

same as those in p and is 0 otherwise. Then Fp(x) is the sum of these four scores. This
function has a global maximum of 200 at p. It also has very large plateaus over which the
function is constant. These plateaus will confound any myopic hillclimber.

In terms of the vision system described in the paper, x corresponds to the encoding
of segmentation parameters and Fp represents in abstract terms the matching confidence
resulting from applying Phoenix with x to a given input image p.

Note that since the precise nature of the function (eq. 2.8) to be optimized is known, we

can more reliably predict the strengths and limitations of the system. In this experiment,
p is randomly generated uniformly from {0, l}n. Then, 2000 data points whose Hamming
distance to p is at most 4 are randomly generated from a distribution such that 80% of
the data points are produced by perturbing the first 10 bits of p, 10% by the first 15 bits,
and the rest 10% by entire 20 bits. Conceptually, each of these data points may be viewed
to simulate the segmentation parameter values for an image that will give rise to the best
possible recognition result for the image.

Out of these 2000 data points 500 are randomly selected as training data. The remaining
1500 data points as testing data. As in the real data experiments described above (Section
4.1), 15 normalized eigen features are computed to represent these data. Thus, there are
20 Bernoulli units, each of which has 15 input lines that encode a particular pattern to be

32

(a) (b)

(d)

Figure 2.14: (a) and (b): Segmentation performance of the Phoenix algorithm on two testing images
(frames 2 and 4) with learned parameters, (c) and (d): Samples of segmentation performance of the
Phoenix algorithm with default parameters on the two images shown in Figure 2.12.

searched for.

Training consists of repeated sweeps through the training set until the average value
of F has reached 190, which is about 95% of the optimal value of 200 (see eq. 2.8). An
added benefit is that it prevents the system from overfitting the data, resulting in better
generalization. The result shows that after about 5000 sweeps through the training data, the
system achieved an average value of 180 over 90% of the testing data and an average value
of 170 over the entire testing data. Further examination revealed that the majority of those
testing data whose value is less than 180 come from 20 bit perturbation to p. These data
were least represented, and therefore, resulted in relatively not so good performance. This
generalization characteristic is typical in connectionist networks. These results demonstrate
that the algorithm can be expected to perform reasonably well on large data sets in large

problem domains.

33

2.4.4 Computational Efficiency

The computational efficiency of the system should be evaluated against other systems hav-
ing similar operating characteristics. To the best of our knowledge, however, there is no
similar system that directly uses recognition result as a feedback to drive learning for image
segmentation. Thus, as a comparison we applied a stochastic hillclimber to the same indoor
images used for the experiments described in the above (Section 4.1). We first applied the
K-Means algorithm [52] to the eigen features to determine K centers, where K = 4 in this
experiment. Then four images that are closest to the four centers are used as training data.
There are, therefore, four sets of Phoenix parameters, each of which is associated with a
particular center. For a given image, generalization is made by searching for the nearest
cluster center and then applying the set of Phoenix parameters associated with the cluster.

In the beginning, the hillclimber occasinally moves along directions that are not very
promising. However, as search continues the probability of downhill movement is reduced.
The annealing schedule used in this experiment is an inverse function of the number of
iterations. It is improtant to note that if each dimension of the input space at every iteration
has to be examined to estimate the gradient, the amount of computation required would be
prohibitive. Instead, we randomly perturb 3 dimensions (where each dimension is equally
likely to be selected) to move up the gradient. Thus, the amount of computation is three
times ofthat required by the reinforcement learning system at each iteration. The decision
of where to look next critically influences the computational efficiency of the optimization
process. Like the reinforcement learning method, however, a priori gradient information is
not available. It has to be estimated by sampling the search space.

A comparison of the results shown in Figure 2.9 clearly demonstrates that the reinforce-
ment learning system performed significantly better than the stochastic hillclimber, despite
the fact that it took more computation time at every iteration.

2.5 Conclusions

The key contribution of the paper is the general framework for the usage of reinforcement
learning in a model-based object recognition system. Our investigation into reinforcement
learning-based object recognition shows convincingly that a robust and adaptive system can
be developed that automatically determines the criteria for segmentation of the input images
and selects useful features that result in a system with high recognition accuracy when
applied to new unseen images. Note that the performance of any learning-based computer
vision system depends on the vision algorithms that are used, e.g., the recursive region-
splitting Phoenix algorithm used in this paper for the segmentation of color images. Future

34

research will address extensions for enlarging the scope of the approach to encompass closed-
loop 3-D object recognition and problems in active vision where reinforcement learning
could be extremely useful. Furthermore, incorporation of "delayed" reinforcement learning
could adequately address the inherent multi-level nature of vision systems [66]. It is to be
noted that in this paper we have used a parameter optimizing methodology for performance
improvement. An alternate approach for performance improvement by input adaptation has
been given by Zheng and Bhanu [97].

2.6 APPENDIX A: The Phoenix Segmentation Algorithm

The Phoenix image segmentation algorithm is based on a recursive region splitting technique
[46]. It uses information from the histograms of the red, green, and blue image components
to split regions in the image into smaller sub-regions on the basis of a peak/valley analysis
of each histogram. An input image typically consists of red, green, and blue image planes,
although monochrome images, texture planes, and other pixel-oriented data may also be
used. Each plane is called a feature or feature plane.

Figure 2.15 shows a conceptual description of the Phoenix segmentation process. It
begins with the entire image as a single region. It then fetches this region and attempts to
segment it using histogram and spatial analyses. If it succeeds, the program fetches each of
the new regions in turn and attempts to segment them. The process terminates when no
region can be further segmented.

The histogram analysis phase computes a histogram for each feature plane, analyzes
it and and selects thresholds or histogram cutpoints that are likely to identify significant
homogeneous regions in the image. A set of thresholds for one feature is called an interval
set. During the analysis, a histogram is first smoothed with an unweighted window average,
where the window width is hsmooth. It is then broken into intervals such that each contains
a peak and two "shoulders." A series of heuristics is applied to eliminate noise peaks.
When an interval is removed, it is merged with the neighbor sharing the higher of its two
shoulders. Splitmin is the minimum area for a region to be automatically considered for
splitting.

Two tests determine if an interval should be retained. First, the ratio of peak height to
the height of its higher shoulder must be greater than or equal to the maxmin threshold.
Second, the interval area must be larger than an absolute threshold and the relative area,
percent of the total histogram area. The second highest peak can now be found, and peaks
lower than the height percent of this peak are merged. The lowest valley is then determined,
and any interval whose right shoulder is higher than absmin (Phoenix's parameter) times
this valley is merged with its right neighbor. Finally, only intsmax (Phoenix's parameter)

35

' r B^^ST^ Fetch Region KJT*..-S
' 1

Rejected Region

Histogram Analysis

1 1
No Acceptable Histograms

Spatial Analysis

' 1
No Acceptable Features

Split Region

1
■

Figure 2.15: Conceptual diagram of the Phoenix segmentation algorithm.

intervals are retained by repeatedly merging intervals with low peak-to-shoulder ratio.

The spatial analysis selects the most promising interval sets, thresholds the corresponding
feature planes, and extracts connected components for spatial evaluation. The feature and
the interval set providing the best segmentation (the least noise area) are accepted as the
segmentation feature and the thresholds.

The histogram cutpoints are now applied to the feature plane as intensity thresholds
and connected components are extracted. After each feature has been evaluated, the one
producing the least total noise area is accepted as the segmentation feature. If no suitable
feature is found, the original region is declared terminal. Otherwise the valid patches,
merged with the noise patches, are converted to new regions and added to the segmentation
record. In either case, a new segmentation pass is scheduled. For additional details, see
[46].

36

2.7 APPENDIX B: The Cluster-Structure Algorithm for
Matching

The cluster-structure algorithm can be divided into the following main steps: (1) Determine
Disparity Matrix, (2) Initial Clustering, (3) Sequencing, (4) Final Clustering, (5) Transform
Computation. The algorithm first computes the disparity matrix. It determines the segment
length of each line and the angles between successive lines from the set of vertices for the
model and the image input to the program. At this point, every segment in the model will
be compared against every segment in the image. If segment lengths and successor angles
are compatible, the algorithm computes the rotational and translational disparity between
pairs of segments. These values are stored in the disparity matrix and are indexed by the
segment numbers in the model and the image. The algorithm continues until all segments
have been compared. It then computes the range of rotational and translational values
present in the matrix, and normalizes them over their appropriate range.

The initial clustering determines clusters from the normalized values in the disparity
matrix. At each step, the program clusters all of the samples, recomputes the new cluster
centers, and continues until none of the cluster centers change their positions. The program
then selects the cluster having the largest number of samples. Also selected are the clusters
that are within 20% of the largest one. Each cluster is considered separately and the final
transform comes from the cluster that yields the highest confidence level.

The sequencing step uses the samples in the current cluster to find all sequences in the
samples. This provides the critical structural information. Samples that are not placed
in any sequence are discarded. The program also removes sequences that have a segment
count of less than three (three segments comprise the basic local shape structure). It then
computes the rotational and translation averages of each sequence that has been located.

Using the sequences and the sequence averages, the final clustering step clusters these
values to find those sequences that lead to the same rotational and translational results.
This is achieved by using the iterative technique of clustering, evaluating, clustering, etc.
The program then selects the cluster that contains the largest number of sequences and
passes this cluster to the final step.

The final step of the algorithm computes the confidence level of the transformation
determined by each cluster. The cluster having the highest confidence level is selected as
the final transformation cluster. It assembles the set of matched segments in the sequences in
this cluster. The final output of the program is the rotation and the vertical and horizontal
translation necessary to locate the model within the image. The program also produces
a confidence level indicating the likelihood that the final matching is correct. For further
details, see [15].

37

Chapter 3

Adaptive Image Segmentation and
Feature Extraction

Object recognition is a multi-level process requiring a sequence of algorithms at low, inter-
mediate and high levels. Generally, such systems are open loop with no feedback between
levels and assuring their robustness is a key challenge in computer vision and pattern recog-
nition research. A robust closed-loop system based on "delayed" reinforcement learning is
introduced in this paper. The parameters of a multi-level system employed for model-based
object recognition are learned. The method improves recognition results over time by using
the output at the highest level as feedback for the learning system. It has been experimen-
tally validated by learning the parameters of image segmentation and feature extraction
and thereby recognizing 2-D objects. The approach systematically controls feedback in a
multi-level vision system and shows promise in approaching a long-standing problem in the
field of computer vision and pattern recognition.

3.1 Introduction

Most vision systems use a sequence of algorithms that operate at various stages of abstrac-
tion to perform a given task, such as object recognition. In earlier work that combines
learning and vision [64], the inherent multi-stage nature of vision systems has not been ad-
dressed adequately. In this paper an approach that takes the output of the final stage and
uses it as a feedback in a reinforcement learning framework to influence the performance
of the lower stages of vision algorithms is presented. The overall system performance is
improved over time with this method.

38

Figure 3.1 illustrates the typical approach for model-based object recognition, which is
often unidirectional and without feedback. For those systems that do Use feedback [90, 19],
there is no learning from experience to improve future recognition performance, which is the
subject of this correspondence. The segmentation and feature extraction modules shown
in Figure 1 use default parameters that are usually obtained by the system designer by
following a trial and error approach. However, the designer cannot anticipate all possible
inputs to the algorithms; the content of the three-dimensional scene and the environmental
conditions are not known a priori. The simultaneous adjustment of even a few system
parameters is time-consuming and difficult and has yet to be solved satisfactorily for multi-
stage systems. As a result, the approach shown in Fig. 3.1 is inadequate for real-world
applications. The key to the performance improvement of a multi-stage object recognition
system over time is the automatic adjustment of parameters of various algorithms used in
the system.

3.2 Our Approach

If it is assumed that the model matching produces a confidence measure indicating the
closeness of the selected features to the model, then it is natural to use this confidence as
feedback to influence the system's performance for segmentation and feature extraction.
The broad goal of such a scheme is to try to find, for any given image, a set of parameters
for image segmentation and feature extraction in ways that minimize recognition errors.
Applying a reinforcement learning algorithm to the parameters can be viewed as a means
of doing just this when the matching confidence is used as reinforcement. Figure 3.2 shows
a closed-loop reinforcement learning-based system to achieve this goal.

In contrast, it would be difficult, if not impossible, for a conventional search method to
accomplish the same task. Simply, there are no well-defined evaluation functions at each of
the stages for a method to search for. Furthermore, if a method uses the confidence of model-
matching for evaluation, then it is not clear how the process should proceed in a systematic
way. Finally, at each stage, any such method will have to delay its decision as to where to
search next until the confidence of model-matching becomes available. However, this need
not be the case for the approach presented in this paper. From a computational standpoint,
therefore, our approach is more attractive since the computation can be distributed over
time more evenly, which will reduce overall demands on the memory and speed.

The original contribution of this work is to provide an incremental method based on
"delayed" reinforcement learning for inducing a general mapping from images to parameter
settings in a multi-stage model-based object recognition system. A theoretical model is
provided and its efficacy is validated using real-world data.

39

Confidence Level for Matching

l*&t*W«*

P«rfw*Rxtr«:t»ffl Parameters

Figure 3.1: Conventional system for object recognition.

Confidence Level for Matching

iiiiiiiiiii ■

|p^:|j|§:jjii||§ii ,

::SqmM<| *-QP»r»metera^

Figure 3.2: Reinforcement learning-based multi-stage system for object recognition.

3.3 Reinforcement Learning

Reinforcement learning studies computational approaches to learning from rewards and
punishments (called reinforcement). It is about learning optimal control in Markov decision
problems. In this paper, reinforcement corresponds to the confidence measure generated
by the model matching (see Fig. 3.2). Several factors complicate reinforcement learning,
the most important of which is the timing of reinforcement. Reinforcement becomes avail-
able after each action in simple tasks. In most complex tasks, however, reinforcement is
often temporally delayed. For example, in the object recognition system, the goodness of

40

segmentation and feature extraction may not be reliably known until model matching has
been performed.

One set of effective methods for delayed reinforcement learning is given by the theory
of dynamic programming. Given a Markov decision problem, these methods involve first
determining the "optimal action-value function," the Q function [92], that assigns to each
state-action pair a value measuring the average total (discounted) reward obtained when a
particular action is taken in the given state and the optimal policy is followed thereafter.
That is, using the notation that x denotes the current state, a the current action, r the
resulting immediate reward, and y the resulting next state from taking a in a;, then

Q(x,a) = R(x,a) + 7^2Pxy(a)V(y) (3.1)
y

where R(x, a) = E{r\x, a} with Edenoting the expectation operator, V(x) = maxa Q(x, a),
Pxy(a) is the probability of making a state transition from x to y as a result of applying
action a, and 7 € [0,1) is a discount factor. Note that once the Q function is known it
is straightforward to determine the optimal policy. Note also that both x and a can be
vectors.

The particular method employed in this work for learning the Q function is the Q(A)
algorithm [67], where A G [0,1]. Although a detailed analysis of the Q(A) algorithm is be-
yond the scope of the paper, a brief explanation follows. Like Q learning [92], Q(A) learning
works by maintaining an estimate Q of the Q function and updating it so that equation
(3.1) comes to be more nearly satisfied for each state-action pair encountered. In Q(A)
learning, however, the estimate Q{xt, at) is regressed not just toward the estimate V(xt+1),
which Q learning does, but to a weighted mixture of the estimates V(xt+i), V^t+s), • • •,
V(xt+k), etc., up to and including the final outcome, where the weightings are proportional
to Afc_1. That is, A controls the proportion in which future estimates are combined into
overall targets. By shifting the estimate for Q(x,a) toward a weighted mixture of down-
stream targets, Q(A) learning not only achieves better computational efficiency, but also
enables, under appropriate conditions, the elimination of the effect of initial bias. Note that
it is not difficult to see that when A = 0, Q(A) learning reduces to simple Q learning. The
typical choice for the A value is somewhere between 0 and 1.

To implement the Q(A) learning algorithm, a memory mechanism, called the eligibility
trace, is used. The eligibility trace assigns a value to each experienced state-action pair with
more recent ones having higher values. If Tr (x, a) denotes the eligibility trace of state-action
pair (x, a), then the Q(A) learning algorithm can be described in Figure 3.3.

41

1. Q(x, a) = 0 and Tr(x, a) = 0 for all x and a. t = 0

2. Do Forever:

(a) xt <— the current state

(b) Choose an action at that maximizes Q(xt,at) over all at

(c) Carry out action at in the world. Let the short term reward be rt, and the
new state be ajt+i

(d) e't -rt + fVt(xt+i)-Qt{xt,at) , et = n + fVt (xt+i) - - Vt{xt)

(e) For each state-action pair (x, a) do

• Tr{x, a) = */\Tr(x, a)

• Qt+i(x,a) = Qt{x,a) + aTr(x ,a)et

(f) Qt+i(xt,at) = Qt+i(xt,at) + ae't

(g) Tr{xt,at) = Tr{xt,at) + l

(h) t = t + l

Figure 3.3: The Q(A)-learning algorithm.

3.4 Reinforcement Learning for Object Recognition

In the multi-stage system for model-based object recognition described in Figure 3.2, there
are unknown parameters for both the segmentation and feature extraction modules. The
segmentation module is based on the Phoenix algorithm [46, 59]. Phoenix was chosen
because it is a well-known method for the segmentation of color images with a number of
adjustable parameters. Phoenix uses region splitting based on histograms of color features
and is critically dependent on system parameters Hsmooth and Maxmin.

Hsmooth'is the width of the histogram smoothing window, where smoothing is performed
with a uniformly weighted moving average. Maxmin defines the peak-to-valley height ratio
threshold. Any interval whose peak height to higher shoulder ratio is less than this threshold
is merged with the neighbor on the side of the higher shoulder. The algorithm searches

42

for a combination of these parameters that will give rise to a segmentation from which
the best recognition can be achieved. The ranges for each of the two parameters are:
hsmooth = 1 + 2 * hsindex and maxmin = exp(ln(100) + 0.05 * mmindex) + 0.5, where
hsindex,mmindex G [0 : 31]. The resulting search space is about one thousand sample
points.

The feature extraction module finds polygon approximation for borders of each of the
regions obtained after image segmentation. It is based on a split and merge technique
that is critically dependent on neighborhood parameters, called Ml and M2. They affect
maximum curvature estimations [62]. For the purpose of this paper only M2 is subject to
adaptation.

Our object recognition process employs a cluster-structure matching algorithm [15] that
is based on the clustering of translational and rotational transformations between the object
and the model for recognizing 2-D and 3-D objects. The algorithm takes as input two sets of
tokens, one of which represents the stored model and the other represents the input region
to be recognized. It then performs topological matching between the two token sets. It
computes, based on the number of model segments that match the segments in the data,
a real number that indicates the confidence level of the matching process. This confidence
level is then used as a reinforcement signal to drive the algorithm.

The objective of the system is to autonomously find a set of segmentation and feature
extraction parameters that achieves the maximum matching confidence for a given input
image. Our model-based recognition system is a multi-stage decision process where the
parameters Hsmooth and Maxmin are at the first stage of the process and the parameter M2
is at the second stage. The goodness of a particular decision such as selecting a combination
of the segmentation parameters is not known until the model matching has been performed.
To achieve the objective, therefore, the Q(A) learning algorithm with the confidence of model
matching as reinforcement is used to adjust the parameters at both the first stage and the
second stage.

Let i be an input image to the segmentation module, ä be an instance of segmentation
parameters, and b be an instance of feature extraction parameters. (Note that in this paper,
b is simply a sealer.) Also, let is be the segmented image resulting from applying Phoenix
with ä as its parameter values to image i. Then according to the Q(A)-learning algorithm
Q{i,a) measures how good the instance a is when Phoenix applied to image i. Likewise,
Q(is,b) measures the quality of extracted features when the feature extraction algorithm
with b as its parameter values is applied to the segmented image is. When the Q(A) learning
algorithm is applied to the parameters the value of Q(i, a) will be corrected to look more like
the value of the segmented image, V(is) = m&xbQ(is, b), which will in turn be estimated
according to the matching confidence.

43

1. Initialization: Q(x,p) <— 0 for all x,p, where x is either an image or a segmented
image and p is either an instance of segmentation parameters ä or feature extrac-
tion parameters 6.

2. LOOP:

• For each image i in the training set do

(a) Segment image i with segmentation parameters ö = (ai, a2, • ■ •, an)
recommended by e-greedy policy; i, is the resulting segmented image.

(b) Update Q(i,ä) according to Q(A) learning with e' = fV(is) — Q(i, ä),
e = yV{i.)-V(i)

(c) Perform feature extraction with feature extraction parameters 6 =
(6i, 62, • • •, bn) recommended by e-greedy policy from the segmented
image i,.

(d) Compute the matching of each connected component (which is close
to the size of the current model) against stored model and return the
highest confidence level r

(e) Update Q_(i,,b) and Q(i,ä) according to Q(A) learning with e' =
r - Q(i,,b) and e = r - V{is)

3. UNTIL terminating condition

Figure 3.4: Main steps of the delayed reinforcement learning algorithm for parameter adjustment
for segmentation and feature extraction.

Figure 3.4 shows the main steps of the algorithm described, where e-greedy policy is
a greedy policy that selects random actions for e fraction of time. Although there is no
strong theoretical fundation, this exploration strategy works well in practice. The algorithm
terminates when either the number of iterations has exceeded a prespecified value or the
recognition confidence level has reached a given threshold.

Note that in general there may be no model object, or there can be multiple instances
of one model object or several different model objects in the image. If the goal is to
recognize multiple objects, it might be preferable to use an average of the confidence levels
resulting from each model matching. The desired result is that parameters are chosen
more judiciously so as to optimize the average confidence measure that rewards parameters

44

accommodating differences in characteristics between regions in the image. There are other
possibilities as well. For example, one might design a method whose operating conditions
are amended to these differences to achieve optimal performance for segmentation, feature
extraction, and model matching. Such a scheme would localize its computation by ways of
local segmentation to meet each individual requirement. We are currently pursuing these
ideas [8]. In this paper, however, we are concerned with simple situations where only one
model object is present in the image. Thus, the maximum confidence level suffices.

3.5 Experimental Validation

There are several representation schemes for the Q function in the reinforcement learning
paradigm. Since the goal here is to demonstrate the effect of learning for multi-stage
recognition, we have used a look-up table based representation.

The two dimensions of the look-up table are the following: (1) input or segmented
(feature-extracted) image, (2) action represented by a particular combination of system
parameters. The "activity" trace Tr is similarly indexed. All the table entries are initialized
to zero, which means that each combination of the parameter values can be selected for
evaluation with equal probability in the beginning. The focus of the experiments is to
demonstrate the feasibility of using learning for multi-stage recognition. Also, j = 0.95, A
= 0.3, and e = 0.1 for all the experiments reported here.

Ar^r»

(a) (b)

Figure 3.5: A sample outdoor color image (Frame 1 of a 20 frame sequence) and (b) polygonal
model of the car.

Figure 3.5(a) shows a sample of a sequence of outdoor color images (120 X 120) obtained
under varying environmental conditions. These images were collected approximately every
15 minutes over a ~ 2 and 1/2 hour period [12]. The images exhibit varying shadow and

45

J-> L kn
\i

(a) (b)

J»-

n
300

Itontfc»

(c)

i^f my

(d)

Figure 3.6: Experimental results (training) for the image in Fig. 5. (a) matching confidence level
(b) parameter M2 (c) parameter HSMOOTH (d) parameter MAXMIN.

(a) (b) (c) (d)

Figure 3.7: Improvement of the segmentation over time, (a) initial segmentation (b) segmentation
at time step 200 (c) segmentation at time step 400 (d) segmentation at time step 600.

reflection on the car as the position of the sun changed and clouds came in and out the
field of view of the camera that had auto iris adjustment turned on. The overall goal is to
recognize the car in the image. It should be noted that although the image is in color, for
publication purposes it is being shown in grayscale.

Figure 3.5(b) shows the 2-D model of the car located in Figure 3.5(a). The dark squares
in Figure 3.5(b) correspond to labels of the vertices in the polygonal approximation of
the car. The car is extracted manually in an interactive session from the first frame in
the sequence and its polygonal approximation (Fig. 3.5(b)) is used as the model in the
cluster-structure matching algorithm.

Figure 3.6(a) shows how the confidence, averaged over 5 runs, changes over time for the

46

(a) (b)

Figure 3.8: Polygonal approximation of the car. (a) default M2 parameter (b) learned M2 param-
eter.

image shown in Figure 3.5(a). It should be noted that over time the confidence shown in
Figure 3.6(a) increases. At the end of the training phase the confidence of the match is over
0.9 on a scale which varies between 0 and 1. For acceptable recognition, the confidence of
matching has to be greater than 0.75 in the experiments reported here.

Figures 3.6(b), 3.6(c), and 3.6(d) show how the M2, Hsmooth and Maxmin change over
time for a particular run, respectively. It can be seen clearly that the learned values of M2,
Hsmooth, and Maxmin are considerably different from their starting random values.

To illustrate the results further, Figure 3.7 shows how the segmentation of the image
improves over time during training. Figure 3.7(a) depicts the segmentation before applying
the learning algorithm. Figures 3.7(b) and 3.7(c) depict the segmentation after 1/3 and 2/3
of total time (600 iterations) for training has elapsed, respectively. Figure 3.7(d) depicts
the segmentation at the end of the training phase. It can be seen that the results improve
considerably. While Figure 3.8(a) shows the extracted features (polygonal approximation
of the car) using the default M2, parameter Figure 3.8(b) shows the same feature using the
learned parameter that results in high matching confidence.

Figure 3.9(a) shows another sample frame in the image sequence in which the car of
Figure 3.5(b) must be identified. It can be seen that the lighting conditions in the outdoor
image is significantly different from the one shown in Fig. 3.5(a). The image is taken at
a different time from Figure 3.5(a). Figure 3.9(b) shows the segmentation with default
Phoenix parameters. It should be noted that when default parameters are used the car is
broken up into many small blobs from which polygonal approximation of the car cannot be
accurately obtained. Figures 3.9(c) and 3.9(d) show the segmentation obtained by using the
parameters obtained from learning, and the polygonal approximation of the car obtained
from the segmented image, respectively. The confidence of model matching is 0.88.

Figure 3.10(a) shows an indoor color image. The large triangular shaped object (wedge)
is the object of interest for recognition. Figure 3.10(b) shows the segmentation result using
default parameters from which the appropriate polygonal approximation of the triangular

47

(a) (b) (c) (d)

Figure 3.9: Experimental results, (a) third frame of the image sequence (b) segmentation with
default parameters (c) segmentation with learned parameters (d) final polygonal approximation for
the car.

(a) (b) (c)

^

(d)

Figure 3.10: Experimental results on an indoor image, (a) the color image (b) segmentation with
default parameters (c) segmentation with learned parameters (d) final polygonal approximation for
the wedge.

object cannot be obtained. Figures 3.10(c) and 3.10(d) show the segmentation and the
polygonal approximation of the triangular object with learned parameters respectively. In
this case the confidence of model matching is 0.90. It took about a few hundred iterations
to obtain the result shown in Figure 3.10(c) and (d).

3.6 Conclusion

The model-based system presented in this paper uses the recognition component as part
of the evaluation functions for controlling feedback and learning parameters for image seg-
mentation and feature extraction in a systematic way. In the experiments we have used a
look-up table to represent the Q function. However, look-up table representation may not

48

be adequate in large problems since the search space is often too large to allocate entire
memory. A possible solution to this problem is to first classify input images into represen-
tative clusters [12], for example, using algorithms such as the K-Means algorithm, and then
allocate memory only to the centers of these clusters. For a given image, generalization can
be made by searching for the nearest cluster center. In general, however, compact function
representation schemes that can generalize across spaces must be sought.

One additional benefit of the approach, due to the stochastic nature of reinforcement
learning, is that the system is capable of exploring a significant portion of the search space,
resulting in the discovery of good solutions, which, in general, cannot be achieved by any
deterministic or simple supervised learning methods. Although we have used a three stage
system to demonstrate a general approach to multi-stage model-based object recognition
in a reinforcement learning paradigm, it can certainly be extended to systems having any
number of stages. There is no doubt however that computational complexity will increase
as the number of stages goes up.

Finally, if vision systems could be designed in one-stage as a single black box, the "simple"
reinforcement paradigm would have sufficed. Earlier work on one-stage systems used a team
of stochastic semi-linear units for learning image segmentation parameters [64]. In reality,
however, vision systems have multiple stages for real-world tasks with parameters that need
to be adjusted at each stage. Delayed reinforcement learning based approach presented
here shows promise in providing a potential solution to the problem of object recognition
in multi-stage systems.

49

Chapter 4

Integrated Image Segmentation
and Object Recognition

This paper presents a general approach to image segmentation and object recognition that
can adapt the image segmentation algorithm parameters to the changing environmental
conditions. Segmentation parameters are learned using a reinforcement learning (RL) algo-
rithm that is based on a team of learning automata and operates separately in a global or
local manner on an image. The edge-border coincidence is used as a short term reinforce-
ment to reduce the computational expense due to model matching during the early stage of
object recognition. However, since this measure is not reliable for object recognition, it is
used later in conjunction with model matching in a closed-loop object recognition system
that uses the results of model matching as a reinforcement signal in a "biased" learning
system. The control switches between learning integrated global and local segmentation
based on the quality of segmentation and model matching. Results are presented for both
indoor and outdoor color images where the performance improvement is shown for both
image segmentation and object recognition with experience.

4.1 Introduction

A model based object recognition system has three key components: image segmentation,
feature extraction, and model matching. The goal of image segmentation is to extract
meaningful objects from an input image. Image segmentation is an important and one
of the most difficult low-level computer vision tasks [13]. All subsequent tasks including
feature extraction, model matching, rely heavily on the quality of the image segmentation

50

process.

The inability to adapt the image segmentation process to real-world changes is one of
the fundamental weaknesses of typical model-based object recognition systems. Despite the
large number of image segmentation algorithms available [11], no general methods have been
found to process the wide diversity of images encountered in real world applications. Usually,
an object recognition system is open-loop. Segmentation and feature extraction modules
use default algorithm parameters, and generally work as pre-processing steps to the model
matching component. The fixed sets of algorithm parameters used in various image seg-
mentation and feature extraction algorithms generally degrade the system performance and
lack adaptability in real-world applications. These default sets of algorithm parameters are
usually obtained by the system designer by following a trial and error method. Parameters
obtained in this way are not robust, since when the conditions for which they are designed
are changed slightly, these algorithms generally fail without any graceful degradation in
performance.

The usefulness of a set of algorithm parameters in a system can only be determined
by the system's output, i.e., recognition performance. To recognize different objects or
instances of the same object in an image, we may need different sets of parameters locally
due to the changes in local image properties, such as brightness, contrast, etc. Also the
changing environmental conditions (such as the time of the day, weather conditions, etc.),
affect the appearance of an image which requires the capability to adapt the representation
parameters for multi-scenario object recognition. To achieve robust performance in real-
world applications, a need exists to apply learning techniques which can efficiently search
image segmentation and feature extraction algorithm parameter spaces and find parameter
values which yield optimal results for the given recognition task. In this paper, our goal
is to develop a general approach to a learning integrated model-based object recognition
system, which has the ability to continuously adapt to normal environmental variations.

In the remainder of the section 1, we present an overview of the approach, related
work and the contributions of the paper. Section 2 gives the details of the approach and
discusses algorithms used in this research. Section 3 provides the experimental results for
segmentation and recognition on both indoor and outdoor color images. Finally, section 4
presents the conclusions and the future work.

4.1.1 Overview of the Approach

In this paper, we present a general approach to reinforcement learning integrated image
segmentation and object recognition. A reinforcement learning system is integrated into
the model-based object recognition system to close the loop between model matching and

51

■!&••■

Corf idönce Level

(^ModeT)

Input Images^ vrt<nM0,
Y Extract subimage Input Image

Figure 4.1: Reinforcement learning integrated image segmentation and object recognition system.

image segmentation. The basic assumption is that we know the models of the objects that
are to be recognized, but we do not know the number of objects and their locations in
the image. The goal of the system is to maximize the matching confidence by finding a
set of image segmentation algorithm parameters for the given recognition task (We have
not discussed the problem of feature extraction parameters in this paper. It is described
in a separate paper by Peng and Bhanu [66]). Thus, we address the problem of adaptive
segmentation as finding a set of parameters for the given model and given input image. It
reflects the fact that there may not exist a single set of "optimal" parameters which can
be used for recognizing different objects in a given image. Figure 4.1 provides an overview
of the system. Basically, the system consists of image segmentation, feature extraction,
model matching, and reinforcement learning modules. The image segmentation component
extracts meaningful objects from input images, feature extraction step performs polygo-
nal approximation of connected components, and the model matching step tells us which
regions in the segmented image contain the recognized object. The model matching mod-
ule indirectly evaluates the performance of the image segmentation and feature extraction
processes by generating a real valued matching confidence indicating the degree of success.
This real valued matching confidence is then used to drive learning for image segmentation
parameters in a reinforcement learning framework.

Given the computational expense for performing model matching, our approach uses
edge-border coincidence [14] as a segmentation evaluation measure to find an initial point
from which to begin the search through weight space. However, since this measure is not re-
liable as matching confidence, we use it in conjunction with model matching in a closed-loop

52

system to adapt segmentation parameters to current input image conditions. Subsequent
feature extraction and model matching are carried out for each connected component which
passes through the size filter based on the expected size of objects of interest in the image.
The highest matching confidence is taken as the reinforcement signal. Learning takes place
as a result of interactions between segmentation and model matching.

Significant differences in characteristics exist between an image and its subimages, so
operating conditions are tuned to these differences to achieve optimal performance of seg-
mentation and model matching. For example, to recognize two objects in an image or a
single object at different locations, it is often difficult, if not impossible, to meet all re-
quirements with one process. It is essential to localize computation to meet each individual
requirement. Thus, we adopt a control that switches between global and local segmentation
phases based on the quality of image segmentation and model macthing.

The reinforcement learning integrated image segmentation and object recognition sys-
tem is designed to be fundamental in nature and is not dependent on any specific image
segmentation algorithms or type of input images. Reinforcement learning requires only the
goodness of the performance rather than the details of algorithms that produce the results.
To represent segmentation parameters suitably in a reinforcement learning framework, the
system only needs to know the segmentation parameters and their ranges. In our approach,
a binary encoding scheme is used to represent the segmentation parameters. While the
same task could be learned in the original parameter space, for many types of problems,
including image segmentation, the binary representation can be expected to learn much
faster [65]. In this sense, the system is independent of a particular segmentation algorithm
used.

4.1.2 Related Work and Our Contributions

There is no published work on reinforcement learning integrated image segmentation and
object recognition using multiple feedbacks. Bhanu and Lee [12] presented an image seg-
mentation system which incorporates a genetic algorithm to adapt the segmentation process
to changes in image characteristics caused by variable environmental conditions. In their
approach, multiple segmentation quality measures are used as feedback. Some of these
measures require ground-truth information which may not be always available. Peng and
Bhanu [65] presented an approach in which a reinforcement learning system is used to close
the loop between segmentation and recognition, and to induce a mapping from input images
to corresponding segmentation parameters. Their approach is based on global image sege-
mentation which is not the best way to detect objects in an image; we need the capability
of performing segmentation based on local image properties (local segmentation). Another
disadvantage of their method is its time complexity which makes it problematic for practical

53

application of computer vision.

For object recognition applications, the efficiency of the learning techniques is very im-
portant. How to add bias, a prior or domain knowledge in ä reinforcement learning based
system is an important topic of research in reinforcement learning [50] [22] [89]. For the
RATLE system, Maclin and Shavlik [50] accept "advice" expressed in a simple program-
ming language. This advice is compiled into "knowledge-based" connectionist Q-learning
network. They show that advice-giving can speed up (J-learning when the advice is helpful
(though it need not be perfectly correct). When the advice is harmful, back propagation
training quickly overrides it. Dorigo and Colombetti [22] show that by using a learning
technique called learning classifier system (LCS), an external trainer working within a RL
framework can help a robot to achieve a goal. Thrun and Schwartz [89] have discussed
methods for incorporating background knowledge into a reinforcement learning system for
robot learning.

In our approach, the edge-border coincidence is used to locate an initial good point
from which to begin the search through weight space for high matching confidence values.
Although as a segmentation evaluation measure the edge-border coincidence is not as reliable
as the matching confidence, lower edge-border coincidence values always result in poor model
matching. Likewise, higher edge-border coincidence values suggest with high probability
that the current set of segmentation parameters is in a close neighborhood of the optimal
one. It is an inexpensive way to arrive at an initial approximation to a set of segmentation
parameters that gives rise to the optimal recognition performance. The control switches
between global and local segmentation processes to optimize recognition performance. To
further speed-up the learning process the reinforcement learning is biased when the model
matching confidence or the edge-border coincidence is used as the reinforcement signal (note
that the reinforcement learning is unbiased initially when the edge-border coincidence is used
as the reinforcement signal). We achieve better computational efficiency of the learning
system and improved recognition rates compared to the system developed by Peng and
Bhanu [65].

The original contributions of the reinforcement learning integrated image segmentation
and object recognition system presented in this paper are:

• To achieve robustness for image recognition system operating in real world, model
matching confidence is used as feedback to influence the image segmentation process,
and thus provide an adaptive capability.

• A RL system based on a team of learning automata is applied to represent and update
both global and local image segmentation parameters. The learning system optimizes
segmentation performance on each individual image and accumulates segmentation

54

experience over time to reduce the effort needed to optimize future unseen images.

• Edge-border coincidence, as a segmentation evaluation measure, reduces computa-
tional costs by avoiding expensive model matching, especially during earlier stages of
learning.

• Learning local segmentation parameters on subimages, which may potentially contain
objects, improves the performance of object recognition system.

• Explicit bias is used in the RL based system to speed up the learning process for
adaptive image segmentation.

4.2 Technical Approach

The goal of our system is to maximize the model matching confidence by finding a set
of image segmentation algorithm parameters for a given recognition task. To reduce the
computational expense of model matching, the edge-border coincidence is first used as
evaluation function to find a set of parameters from which to begin the learning. The
segmentation process has two distinct phases: global and local. While global segmentation is
performed for the entire image, local segmentation is carried out only for selected subimages.
For a set of input images, the system takes inputs sequentially. This is similar to human
visual learning process, in which the visual stimulus are presented temporally in a sequential
manner. For the first input image, since the system has no accumulated experience, we
initialize the system using random value of weights in the unbiased stocastic RL algorithm.
For each input image thereafter, the learning process starts from the set of segmentation
parameters learned based on all the previous input images. The following are the main
steps of our learning algorithm:

Initial Approximation. The edge-border coincidence is used as a short term reinforce-
ment during earlier stages of learning to drive weight changes without going through the
expensive model matching process. Once the edge-border coincidence has exceeded a given
threshold, the weight changes will be driven by the matching confidence, which requires
more expensive computation of feature extraction and model matching.

Learning Global Segmentation. A network of biased Bernoulli units generates a
set of segmentation parameters from which segmentation is performed on the entire image.
The evaluation of the segmentation process is provided by the model matching confidence,
which is then used to drive changes to the weights according to the reinforcement learning
algorithm. We assume that we have a prior knowledge of the size of objects of interest in
the images. For those connected components which pass through the size filter based on the

55

expected size of objects of interest in the image, we perform feature extraction and model
matching. The highest matching confidence is taken as the reinforcement to the learning
system. If the highest matching confidence level is above a given switching threshold, we
focus image segmentation and model matching on the connected component and switch to
the local search process.

Learning Local Segmentation. Once a connected component has been extracted from
the input image, the local search begins to find the best fit parameters for the subimage.
It starts from the current estimate of weights that resulted from global learning. Similar to
global learning, the matching confidence is used to update the weights estimate, until the
matching confidence reaches the accepting threshold (0.8 in our experiments) or the number
of iterations reaches the MaxLocal (in our experiments, it is set at 20). If after MaxLocal
loops, the matching confidence is still under the accepting threshold, we switch back to the
global learning process, continue the learning from where we switched to the local search
process. If the matching confidence reaches the accepting threshold, the learning process
for the current input image is terminated.

4.2.1 Phoenix Image Segmentation Algorithm

Since we are working with color imagery in our experiments, we have selected the Phoenix
segmentation algorithm [46][59]developed at Carnegie-Mellon University and SRI Interna-
tional. The Phoenix segmentation algorithm has been widely used and tested. It works
by recursively splitting regions using histogram for color features. Phoenix contains seven-
teen different control parameters, fourteen of which are adjustable. The four most critical
ones that affect the overall results of the segmentation process are selected for adaptation:
Hsmooth, Maxmin, Splitmin, and Height. Hsmooth is the width of the histogram smoothing
window. Maxmin is the lowest acceptable peak-to-valley height ratio. Splitmin represents
the minimum area for a region to be automatically considered for splitting. Height is the
minimum acceptable peak height as a percentage of the second highest peak. Each param-
eter has 32 possible values. The resulting search space is 220 sample points. Each of the
Phoenix parameters is represented using 5 bit binary code, with each bit represented by
one Bernoulli unit. To represent 4 parameters, we need a total of 20 Bernoulli units. More
details about Phoenix are given in the report by Laws [46].

4.2.2 Segmentation Evaluation

Given that feature extraction and model matching are computationally expensive processes,
it is imperative that initial approximation be made such that overall computation can be
reduced. To achieve this objective, we introduce a secondary feedback signal - segmentation

56

Table 4.1: Ranges for selected Phoenix parameters.

Parameter Sampling Formula Range
Hsmooth:

hs £ [0 : 31]
hsmooth=l + 2 x hs 1 -63

Maxmin:
mm € [0 : 31]

ep=ln(100)+0.05 X mm
maxmin = exp(ep) + 0.5

100-471

Splitmin:
sm € [0 : 31]

splitmin=9 + 2 x sm 9-71

Height:
h e [0 : 31]

height=l + 2 * h 1 -63

(a) (b) (c)

Figure 4.2: Edge-border coincidence, (a) input image; (b) Sobel edge magnitude image (thresh-
old = 200); (c) boundaries of the segmented image. Segmentation parameters are: Hsmooth=7,
Maxmin=128, Splitmin=47, Height=60.

evaluation that evaluates the image segmentation quality. There are a large number of
segmentation quality measures that have been suggested. The segmentation evaluation we
selected is the edge-border coincidence [12][53], which measures the overlap of the region
borders in the segmented image relative to the edges found using an edge detector, and
does not depend on any ground-truth information. In this approach, we use the Sobel edge
detector to compute the necessary edge information. Edge-border coincidence is defined as
follows. Let E be the set of pixels extracted by the edge operator and S be the set of pixels
found on the region boundaries obtained from the segmentation algorithm:

Edge — border coincidence =
n{Ef\S)

n(E) '

where n(A) is the number of elements in set A

Figure 4.2 shows the Sobel edge image of an experimental indoor color image and the
boundaries of the segmented image using the Phoenix segmentation algorithm. The edge-
border coincidence for the segmented image is 0.6825. Segmentation evaluation indicates

57

the quality of the segmentation process. Matching confidence, the recognition system's
output, indicates the confidence of the model matching process, and indirectly shows the
segmentation quality of the recognized object. It is possible that segmentation evaluation is
high and matching confidence level is low, or segmentation evaluation is low and matching
confidence is high. Figure 4.3(a) shows that global segmentation evaluation is not well cor-
related with matching confidence. However, local segmentation evaluation, which measures
the overlap between the edges and region borders of a subimage, is strongly correlated to
the matching confidence, as shown in Figure 4.3(b).

Although the global segmentation evaluation does not correctly predict the matching
confidence, for our purpose it is sufficient to drive initial estimates. If the edge-border
coincidence is under a threshold, which indicates a low possibility to get a good recognition
result, the system repeats the initial estimation process using the edge-border coincidence
as the sole reinforcement feedback signal until the edge-border coincidence is greater than
the threshold. At that time, the segmentation performance will be determined completely
by the model matching.

4.2.3 Reinforcement Learning for Image Segmentation

Reinforcement learning is the problem faced by an agent that must learn behavior through
trial-and-error interactions with a dynamic environment. It is appropriately thought of
as a class of problems, rather than as a set of techniques [44]. This type of learning has
a wide variety of applications, ranging from modeling behavior learning in experimental
psychology to building active vision systems. The term reinforcement comes from studies of
animal learning in experimental psychology. The basic idea is that if an action is followed by
a satisfactory state of affairs or an improvement in the state of affairs, then the tendency to
produce that action is reinforced. Reinforcement learning is similar to supervised learning
in that it receives a feedback to adjust itself. However, the feedback is evaluative in the
case of reinforcement learning. In general, reinforcement learning is more widely applicable
than supervised learning and it provides a competitive approach to building autonomous
learning systems that must operate in real world.

There are several reasons why we apply reinforcement learning in our computer vision
system. First, reinforcement learning requires knowing only the goodness of the system
performance rather than the details of algorithms that produce the results. In the ob-
ject recognition system, model matching confidence indirectly evaluates the performance
of image segmentation and feature extraction processes. It is a natural choice to select
matching confidence as a reinforcement signal. Second, convergence is guaranteed for sev-
eral reinforcement learning algorithms. Third, reinforcement learning is well suited to the
multi-level object recognition problems in image understanding. It can systematically assign

58

Global SegmentaSon Evaluation vs. Matehing

Okibai Segmental on Evaluaton

(a)
Local Sagmentalion Evaluation va. Matching

Local Segmentalion Evalualon

(b)

Figure 4.3: (a) Global edge-border coincidence vs. matching confidence; (b) Local edge-border
coincidence vs. matching confidence for recognizing the cup in the image shown in Figure 4.2(a).

rewards to different levels in a computer vision system.

Inputs

Figure 4.4: Basic structure of a Bernoulli unit.

The particular class of reinforcement learning algorithms employed in our system is the
connectionist REINFORCE algorithm [93], where units in such a network are Bernoulli
quasi-linear units. Figure 4.4 shows the basic structure of a Bernoulli unit. A team of five
independent Bernoulli units represent a segmentation parameter with 32 possible values.
The output of each unit is either 1 or 0, determined stochastically using the Bernoulli
distribution with probability mass function p = f(s), where / is the logistic function. For

59

such an unit, p represents the probability of choosing 1 as its output value.

/(*) = i , _,i where s = Y,WHXJ i + e i

where Wij is the weight of the jth input for unit i, and Xj is the jth input value for each unit.
In the reinforcement learning paradigm, the learning component uses the reinforcement r(t)
to drive the weight changes according to a particular reinforcement learning.algorithm used
by the network. The specific algorithm we used has the following form: for each unit,
at the rth time step, after generating output y(t) and receiving reinforcement signal r(t),
increment each weight Wij by

Awij(t) = a[r{t) - f(t - l)][yi{t) - jji(t - 1)]XJ - 6Wij{t)

where a is the learning rate, S is the weight decay rate, Xj is the input to each Bernoulli
unit, yi is the output of the ith Bernoulli unit. The term r(t) — f(t — 1) is called the
reinforcement factor, and yi(t) — y~i(t — 1) is the eligibility of the weight Wij. f(t) is the
exponentially weighted average of prior reinforcement values,

f(t) = jf(t-l) + (l-j)r(t), withf(0) = 0

7 is the trace parameter. Similarly, y~i(t) is an average of past values of y{ computed by the
same exponential weighted scheme used for f(i),

&•(*) = 7i«(*-i) + (i-7)y.-(<)

The algorithm has the convergence property [93] such that it statistically climbs the gradient
of expected reinforcement in weight space. The weight decay is used as a simple method to
force the sustained exploration of the weight space.

Note that a team of 20 Bernoulli units represents the four image segmentation parameters
selected for learning. Each bit of a parameter is independent of each other. Thus, it allows
us to search the parameter space thoroughly.

4.2.4 Feature Extraction and Model Matching

Feature extraction consists of finding polygon approximation tokens for each connected
component obtained after image segmentation. To speed up the learning process, we assume
that we have the prior knowledge of the approximate size (area) of the object, and only
those connected components whose area (number of pixels) are comparable with the area
of the model object are approximated by a polygon. In Figure 1, the region filter selects

60

(a) (b) (c)

Figure 4.5: (a) Boundaries of the segmented image shown in Figure 4.2(a) (segmentation parame-
ters are: Hsmooth=7, Maxmin=128, Splitmin=47, Height=b4). (b) Selected regions whose areas are
in the expected range (200 - 450 pixels), (c) Polygon approximation of these regions (parameters as
specified in this section).

those connected components whose areas are in the expected range. For example, in our
experiment on indoor images, the cup is the target object. The expected area is from
200 to 450 pixels. Figure 4.5 shows the boundaries of a segmented image, selected regions
whose areas are in the expected range, and the polygon approximation of these regions.
The polygon approximation is implemented by calling the polygon approximation routine
in Khoros [70]. The resulting polygon approximation is a vector image to store the result
of the linear approximation. The image contains two points for each estimated line. The
polygon approximation has a fixed set of parameters:

• Minimal segment length for straight line - 5. When the estimated straight line has a
length less than this threshold, it is skipped over.

• Elimination percentage - 0.1. Percentage of line length rejected to calculate parame-

ters of the straight line.

• Approximation error - 0.6. Threshold Value for the approximation error. When the

calculated error is greater than this value, the line is broken.

Model matching employs a cluster-structure matching algorithm [15] which is based on
forming the clusters of translational and rotational transformations between the object and
the model. The algorithm takes as input two sets of tokens, one of which represents the
stored model and the other represents the input region to be recognized. It then performs
topological matching between the two token sets and computes a real number that indicates
the confidence level of the matching process. Basically, the technique consists of three steps:
clustering of border segment transformations; finding continuous sequences of segments in
appropriately chosen clusters; and clustering of sequence average transformation values.

More details about this algorithm are given in [15].

61

Three Different Rui* ol me Biated Scham«

Number of Loop*

(«)
Three Different Run« o< ttia Unbtatad Scheme

40 SO 80 70 80 90 100

Number o I Loopi

(b)

Figure 4.6: Matching confidence history of three runs of the biased and unbiased RL algorithms
on the image shown in Figure 4.2(a). (a) biased; (b) unbiased.

4.2.5 Biased Reinforcement Learning for Image Segmentation

In the RL algorithm as described in section 2.3, each of the bits of each of the parameters
is independent. The output of each bit depends on the value of p, which represents the
probability of an unit to choose 1 as its output. In the initialization phase, we use the
unbiased RL algorithm in which the output of each bit of a parameter is determined in the
following way:

[1 with probability p
I 0 with probability 1 — p Vi

It is "unbiased" in that the output of a bit is governed solely by the Bernoulli probability
law. The advantage is that rapid changes in output values allow giant leaps in the search
space, which in turn enables the learning system to quickly discover suspected high pay-off
regions. However, once the system has arrived at the vicinity of a local optimum, as will
be the case after the initial estimation, changes in the most significant bit will drastically
alter the parameter value, often jumping out of the neighborhood of the local optimum.
Ideally, once the learning system discovers that it is within a possible high pay-off region,
it should attempt to capture the regularities of the region. This then biases future search
toward points within it. The challenge, of course, is to have a learning algorithm that allows
the parameters controlling the search distribution to be adjusted so that this distribution

62

comes to capture this knowledge. The algorithm described here shows some promise in
this regard. In order to force parameters to change slowly, after the initialization phase,
we apply a biased RL algorithm in which the two most significant bits of a parameter are
forced to change in a slower fashion as:

Vi
1 if p > 0.5
0 otherwise

and other bits use the the same rule as described in the unbiased RL algorithm. Figure 4.6
shows the experimental results of the two schemes on the image shown in Figure 4.2(a).
In this experiment, we only apply the initialization followed by global learning without
switching between global and local learning. The results show that the biased RL algorithm
demonstrates a speed up of 2 - 3.

4.2.6 Algorithm Description

Figure 4.7 shows the implementation of our algorithm. The algorithm works by switching
between global and local segmentation. Initially, if the system has no accumulated knowl-
edge, the edge-border coincidence is used as the evaluation function to search a set of image
segmentation parameters using unbiased reinforcement learning algorithm. Otherwise, the
input image is segmented using the set of parameters learned from previous images. EB1
and EB2 are two thresholds for edge-border coincidence. During the initial unbiased rein-
forcement learning phase, if the edge-border coincidence is greater than EB1 (= 0.5 in our
experiments), then we can start the learning process with a high expectation to generate
good recognition results. During the global segmentation phase, if the segmentation quality
is less than EB2 (= 0.4 in our experiments), the object is less likely to be present in the
segmented image, and choosing another set of parameters using the biased RL algorithm
with the current reinforcement signal can speed up the process.

In the global segmentation procedure, if the global segmentation loops more than Max-
Global, we conclude that the object does not appear in the image and terminate the learning
process for the given input image. For each connected component which passes the region
filter, if the matching confidence is greater than Switch, then we can switch the control
from global to local segmentation. During local segmentation, if the matching confidence
reaches Accept, we conclude that the connected component is the recognized model object.
If the local segmentation loops more than MaxLocal, the control will switch back to global
segmentation since the object is not likely to be extracted in the subimage and we resume
the global segmentation process.

63

procedure InitUlization()

generate a set of random weights
repeat

compute the segmentation parameters
segment the image and compute edge-border coincidence
r(i) = edge-border coincidence, update weights

until edge-border coincidence > EB1

procedure Global_Segmentation()

r(0) = 0.5, highest_matching_confidence = 0
for i from 1 toMaxGlobal do

for each connected component which passes the size filter do
feature extraction and model matching
if matching_confidence > Switch then

Local_Segmentation()

if matching_confidence > highest_matching_confidence
highest_matching_confidence = matching_confidence

r(i) = highest_matching_confidence

if recognized all the connected components then exit
count = 0
repeat

compute the segmentation parameters using r(i)
segment the image using the current set of parameters
count++

if count > MaxSeg then exit
until edge-border coincidence > EB2

procedure Local_Segmentation()
extract subimage from the input image
compute standard deviations of parts of the subimage
copy the weights from global to local process
count = 0

while count < MaxLocal do
subimage segmentation, feature extraction, and model matching
update weights using matching confidence as reinforcement
if matching confidence > Accept then recognized and return
count++

Figure 4.7: Algorithm description.

4.3 Experimental Results

The system is verified through a set of 12 indoor and a set of 12 outdoor color images. These
images are acquired at different times and different viewing distances with varying lighting
conditions. The size of indoor images is 120 by 160 pixels, and the size of outdoor images
is 120 by 120 pixels. Each image is decomposed into 4 images for Phoenix segmentation -
red, green, blue components, and the Y component of YIQ model of color images. For the
indoor images, the desired object is the cup in the image, and in the outdoor images, the

64

Figure 4.8: Row 1: input images; row 2, 3: corresponding segmented image and recognized object.
For each input image, global segmentation evaluation, local segmentation evaluation for the selected
object, and matching confidence are (0.67, 0.74, 0.87); (0.87, 0.62, 0.93); (0.22, 0.82, 0.91); (0.68,
0 73 0 92) The learned Phoenix segmentation parameters Hsmooth, Maxmin, Splitmin, and Height
after local learning process are (7 122 47 52); (7 128 47 52); (5 471 19 58); (11 192 59 48)..

target object is the traffic sign. The expected size of the cup and the traffic sign are 200 to

450 pixels and 36 to 100 pixels, respectively.

Based on the size of the object to be recognized in the image, we divide the Y component
image into 48 subimages for the indoor images, and 36 subimages for the outdoor images.
Each subimage's size is 20 by 20 pixels. The standard deviations of those subimages serve
as inputs to each Bernoulli unit, i.e., each Bernoulli unit has a total of 48 inputs (and
therefore, 48 weights) for the indoor image, and has a total of 36 inputs (36 weights) for
the outdoor image. To learn the four selected Phoenix segmentation parameters, we need
20 Bernoulli units. So there is a total of 960 weights for indoor images, and 720 weights for

outdoor images.

For the team of 20 Bernoulli units, the parameters a, j, and <5 are determined empirically,
and they are kept constant for all images. In our experiments, a = 0.02, 7 = 0.9, and
S = 0.01, EB1 = 0.5, EB2 = 0.4, MaxGlobal, MaxLocal, and MaxSeg are all set to 20.
The threshold for matching confidence Switch = 0.6, and Accept = 0.8. Threshold used for

extracting edges using Sobel operator is set at 200.

4.3.1 Results on Indoor and Outdoor Images

Figure 4.8 and 4.9 show the experimental results on the set of 12 indoor color images
and the set of 12 outdoor color images. For each indoor image, the globally segmented

65

Figure 4.9: Row 1: input images; row 2, 3: corresponding segmented image and recognized object.
For each input image, global segmentation evaluation, local segmentation evaluation for the selected
object, and matching confidence are (0.59, 0.51, 0.82); (0.79, 0.57, 0.85); (0.85, 0.76, 0.88); (0.82,
0.53, 0.92). The learned Phoenix segmentation parameters Hsmooth, Maxmin, Splitmin, and Height
after local learning process are (11 367 43 26); (11 259 23 46); (11 259 29 56); (9 276 31 46).

image using the set of learned parameters and the extracted object which has been finally
recognized, are presented. For each set of images, the 12 images are taken sequentially.
Except for the first image, the learning process for each image starts from the global seg-
mentation parameters learned from all the previous images. For the first input image, the
learning system is initialized using the unbiased RL algorithm. Usually, it takes less than
45 iterations to find a set of segmentation algorithm parameters which produces high edge-
border coincidence. Figure 4.8 and 4.9 also show the global edge-border coincidence, local
edge-border coincidence, model matching confidence, and the four learned segmentation
parameters after local learning process for each input image.

Figure 4.10 shows the CPU time for the 12 indoor images and 12 outdoor images for five
different runs, and the number of loops for each input image, which is the sum of all the
loops involved in the global learning and local learning processes. These two curves show
the learning capability of the system, i.e., the system uses less and less CPU time with
experience to find a set of segmentation parameters and correctly recognizes the object.
The number of learning loops decreases with the accumulation of experience.

66

CPU Tin« I« 12 Moor Imao» NuittMT at Loop« for 12 Moot lrm«M

(a)
CPU Tim« (er 12 Omdoot kmpM

f 2 9 4 5 S 7 S t 10 11 12 1;

(b)
Nurrfc«r ot Loop« for 12 OKdoor lmao«t

Figure 4.10: (a) CPU time for 5 different runs on 12 indoor images and the average; (b) Number
of loops for 5 different runs on 12 indoor images and the average; (c) CPU time for 5 different runs
on 12 outdoor images; (d) Number of loops for 5 different runs on 12 outdoor images.

4.3.2 Comparison of the Two Approaches

In this section we compare the performance of our system as shown in Figure 4.1 with the
approach discussed in the paper by Peng and Bhanu [65]. We show the effect of incorpo-
rating segmentation evaluation using the edge-border coincidence into the learning system
and the impact of global and local segmentations on model matching.

The key differences between the two methods are the introduction of the local segmen-
tation process, the biasing of RL algorithm, and the use of edge-border coincidence as an
evaluation of the segmentation performance during earlier stages of learning in order to
reduce the computational expense stemming from model matching. The segmentation pro-
cess alternates between the whole image and its subcomponents. The local segmentation is
highly desirable when there are multiple targets or a single target at multiple locations with
different local characteristics. It can dramatically improve the recognition performance.
The biasing of RL algorithm reduces computational time as illustrated in Figure 4.6.

In the paper by Peng and Bhanu [65], the matching confidence is the only feedback
that drives learning. Although it is undoubtedly the most reliable measure, it is relatively
expensive to compute. Here the edge-border coincidence provides us with a cheap way
to find a good point from which to begin the more expensive search for high matching
confidence values. Figure 4.11 shows the comparison results of the two schemes: our scheme
(scheme 1) and Peng and Bhanu's scheme (scheme 2). Although good initial estimates may

67

CPU Tim* Ccmpartaon d Two ßctwmn

10 11 ia 13

(a)
CPU Ttm« Ccmpailton at Two Schwrm

Figure 4.11: Comparison of two approaches: scheme 1-approach presented in this paper, scheme
2-Peng and Bhanu's approach (a) Comparison of the average CPU time of 5 different runs on 12
indoor images; (b) Comparison of the accumulated average CPU time of 5 different runs on 12 indoor
images. *?'

not always result in faster discovery of high matching confidence values, the edge-border
coincidence seems to work well in practice for all the problems we have experimented.

4.4 Conclusions and Future Work

We have presented a proof-of-the-principle of a general approach for adaptive image seg-
mentation and object recognition. The approach combines a domain independent sim-
ple measure for segmentation evaluation (edge-border coincidence) and domain dependent
model matching confidence in a reinforcement learning framework in a systematic manner to
accomplish robust image segmentation and object recognition simultaneously. Experimen-
tal results demonstrate that the approach is suitable for continuously adapting to normal
changes encountered in real-world applications.

For adapting to the wide varity of images encountered in real-world applications, we can
develop an autonomous gain control system which will allow the matching between different
classes of images taken under significantly different weather conditions (sun, cloud, snow,

68

rain) and adapt the parameters within each class of images. We use image context to divide
the input images into several classes based on image properties and external conditions,
such as time of the day, lighting condition, etc. [12]. When an image is presented, we
use an image property measurement module and the available external information to find
the stored information for this category of images, and start learning process from that
set of parameters. This will overcome the problem of adapting to large variations between
consecutive images.

The real significance of using a learning network to select segmentation parameters to
optimize model matching performance is that interconnections within the network can en-
force coordination of the choices made by the output units in order to concentrate the search
in suspected high-payoff regions of the parameter space. A network that can coordinate the
choices made by the output units should be able to generate certain combinations of bits
with greater probability than if their individual components were selected independently. If
the network operates in this way it should expect to find high matching confidence values
much more quickly than without coordination. We plan to explore these issues in the future.

69

Chapter 5

Genetic Algorithm for Adaptive
Image Segmentation

Image segmentation is an extremely important and difficult low-level task. The difficulty
arises when the segmentation performance needs to be adapted to the changes in image
quality which is affected by variations in environmental conditions, imaging devices, time of
day, etc. In this Chapter, we describe an adaptive image segmentation system that incor-
porates a feedback loop consisting of a machine learning subsystem, an image segmentation
algorithm, and an evaluation component which determines segmentation quality. The ma-
chine learning component is based on genetic adaptation and uses separately a pure genetic
algorithm and a combination of genetic algorithm and hill climbing. We present experimen-
tal results which demonstrate learning and scalability of the technique with the number of
parameters to adapt the segmentation performance in outdoor color imagery.

5.1 Introduction

Image segmentation is an old and difficult problem. It refers to the grouping of parts of an
image that have "similar" image characteristics. All subsequent interpretation tasks includ-
ing object detection, feature extraction, object recognition, and classification rely heavily
on the quality of the segmentation process. The difficulty arises when the segmentation
performance needs to be adapted to the changes in image quality. Image quality is affected
by variations in environmental conditions, imaging devices, time of day, etc. Despite the
large number of segmentation techniques presently available [26, 39], no general methods
have been found that perform adequately across a diverse set of imagery, i.e., no segmen-

70

tation algorithm can automatically generate an "ideal" segmentation result in one pass (or
in an open loop manner) over a range of scenarios encountered in practical applications.
Any technique, no matter how "sophisticated" it may be, will eventually yield poor perfor-
mance if it cannot.adapt to the variations in real-world scenes. The following are the key
characteristics of the image segmentation problem:

• When presented with a new image, selecting the appropriate set of algorithm param-
eters is the key to effectively segmenting the image. Most segmentation techniques
contain numerous control parameters which must be adjusted to obtain optimal
performance, i.e., they are to be learned. The size of the parameter search space in
these approaches can be prohibitively large, unless it is traversed in a highly efficient
manner.

• The parameters within most segmentation algorithms typically interact in a complex,
non-linear fashion, which makes it difficult or impossible to model the parameters'
behavior in an algorithmic or rule-based fashion.

• The variations between images cause changes in the segmentation results, the objective
function that represents segmentation quality varies from image to image. The search
technique used to optimize the objective function must be able to adapt to these
variations.

• The definition of the objective function itself can be a subject of debate because there
are no universally accepted measures of image segmentation quality.

Hence, a need exists to apply an adaptive technique that can efficiently search the com-
plex space of plausible parameter combinations and locate the values which yield optimal
results. The approach should not be dependent on the particular application domain nor
should it have to rely on detailed knowledge pertinent to the selected segmentation algo-
rithm. Genetic algorithms (GA), which are designed to efficiently locate an approximate
global maximum in a search space, have the attributes described above and show great
promise in solving the parameter selection problem encountered in the image segmentation
task.

The next section of this Chapter argues about the genetic algorithms as the appropriate
optimization technique for the segmentation problem. Section 3 describes the adaptive
image segmentation algorithm. Section 4 presents the experimental results on a sequence
of outdoor images. Section 5 presents the adaptive segmentation results when we scale the
number of parameters in a scheme that uses genetic algorithms and hill climbing. Finally,
Section 6 provides the conclusions of this Chapter.

71

'S

&

Figure 5.1: Segmentation quality surface.

5.2 Image Segmentation as an Optimization Problem

Fig. 1 provides an example of an objective function that is typical for the image segmenta-
tion process. The figure depicts an application in which only two segmentation parameters
(maxmin and absscore) are being varied, and the corresponding segmentation quality ob-
tained for any pair of algorithm parameters. Because the algorithm parameters interact in
complex ways, the objective function is multimodal and presents problems for many com-
monly used optimization techniques. Further, since the surface is derived from an analysis
of real-world imagery, it may be discontinuous, may contain significant amounts of noise,
and cannot be described in closed form. The derivation of this surface will be described in
Section 3, where we discuss the segmentation evaluation process.

The conclusion drawn from an analysis of many segmentation quality surfaces that we
have examined is that we must utilize a highly effective search strategy which can withstand
the breadth of performance requirements necessary for the image segmentation task.

Various commonly used search techniques for functional optimization exist. These in-
clude (a) exhaustive techniques (random walk, depth first, breadth first, enumerative),
(b) calculus-based techniques (gradient methods, solving systems of equations), (c) partial
knowledge techniques (hill climbing, beam search, best first, branch and bound, dynamic
programming, A*), and (d) knowledge-based techniques (production rule systems, heuristic
methods). The limitations of these methods are given in [12, 42, 95]. There are other search

72

techniques such as genetic algorithms, simulated annealing and hybrid or integrated meth-
ods [12]. To address the characteristic of image segmentation problem as discussed earlier,
we have selected genetic algorithms and hybrid methods for adaptive image segmentation.

5.2.1 Genetic Algorithms

Genetic algorithms were pioneered at the University of Michigan by John Holland and
his associates [21, 31, 41]. The term genetic algorithm is derived from the fact that its
operations are loosely based on the mechanics of genetic adaptation in biological systems.
Genetic algorithms can be briefly characterized by three main concepts: a Darwinian notion
of fitness or strength which determines an individual's likelihood of affecting future gener-
ations through reproduction; a reproduction operation which produces new individuals by
combining selected members of the existing population; and genetic operators which create
new offspring based on the structure of their parents.

A genetic algorithm maintains a constant-sized population of candidate solutions, known
as individuals. The initial seed population from which the genetic process begins can be
chosen randomly or on the basis of heuristics, if available for a given application. At
each iteration, known as a generation, each individual is evaluated and recombined with
others on the basis of its overall quality or fitness. The expected number of times an
individual is selected for recombination is proportional to its fitness relative to the rest of
the population. Intuitively, the high strength individuals selected for reproduction can be
viewed as providers of "building blocks" from which new, higher strength offspring can be
constructed. New individuals are created using two main genetic recombination operators
known as crossover and mutation. Crossover operates by selecting a random location in the
genetic string of the parents (crossover point) and concatenating the initial segment of one
parent with the final segment of the second parent to create a new child. A second child
is simultaneously generated using the remaining segments of the two parents. The string
segments provided by each parent are the building blocks of the genetic algorithm. Mutation
provides for occasional disturbances in the crossover operation by inverting one or more
genetic elements during reproduction. This operation insures diversity in the genetic strings
over long periods of time and prevents stagnation in the convergence of the optimization

technique.

The individuals in the population are typically represented using a binary notation to
promote efficiency and application independence of the genetic operations. Holland [41]
provides evidence that a binary coding of the genetic information may be the optimal
representation. Other characteristics of the genetic operators remain implementation de-
pendent, such as whether both of the new structures obtained from crossover are retained,
whether the parents themselves survive, and which other knowledge structures are replaced

73

if the population size is to remain constant. In addition, issues such as the size of the
population, crossover rate, mutation rate, generation gap, and selection strategy have been
shown to affect the efficiency with which a genetic algorithm operates [34].

The inherent power of a genetic algorithm lies in its ability to exploit, in a highly efficient
manner, information about a large number of individuals. By allocating more reproductive
occurrences to above average individuals, the overall net affect is an upward shift in the
population's average fitness. Since the overall average moves upward over time, the genetic
algorithm is a "global force" which shifts attention to productive regions (groups of highly
fit individuals) in the search space. However, since the population is distributed throughout
the search space, genetic algorithms effectively minimize the problem of converging to local
maxima.

To date, genetic algorithms have been applied to a wide diversity of problems. They have
been used in combinatorial optimization [35], gas pipeline operations [30, 32] and machine
learning [42]. With regards to computer vision applications, Mandava et. al [51] have used
genetic algorithms for image registration, Gillies [29], and Roth and Levine [77] for feature
extraction, and Ravichandran [71] for object recognition.

5.3 Genetic Learning for Adaptive Image Segmentation

Genetic algorithms can be used in several different ways to provide an adaptive behavior
within a computer vision system [12]. The simplest approach is to allow the genetic system
to modify a set of control parameters that affect the output of an existing computer vision
program. By monitoring the quality of the resulting program output, the genetic system
can dynamically change the parameters to achieve the best performance. In this paper, we
have adopted this strategy for adaptive image segmentation.

The block diagram of our approach is shown in Fig. 2. After acquiring an input image,
the system analyzes the image characteristics and passes this information, in conjunction
with the observed external variables, to the genetic learning component. Using this data,
the genetic learning system selects an appropriate parameter combination, which is passed
to the image segmentation process. After the image has been segmented, the results are
evaluated. If the quality of segmentation ("fitness") is acceptable, an update to long-term
population is made. If the quality is unacceptable, the process of new parameter selection,
segmentation and evaluation continues until a segmentation result of acceptable quality is
produced, or the termination criteria are satisfied.

74

Input
Image Image

Analysis

Image
Statistics
 ►

External "V&riables
(Time of day, time of year,
rain, snow, haze, cloud, etc)

Image
Distance
Measure

Long-Term
Population Update

Long-Term
Population

Seed
Population

New
Structures

Genetic
Adaptive
System

Control
Parameters I

Short-Term
Population

Image
Segmentation

"Fitness"

Segmented
Images

Segmented
Image
Evaluation

Figure 5.2: Adaptive image segmentation system.

5.3.1 Image Characteristics

A set of characteristics of the image is obtained by computing specific properties of the image
itself as well as by observing the environmental conditions in which the image was acquired.
Each type of information encapsulates knowledge that can be used to determine a set of
appropriate starting points for the parameter adaptation process. For the experiments de-
scribed here, we compute twelve first order properties for each color component (red, green,
and blue) of the image. These features include mean, variance, skewness, kurtosis, energy,
entropy, x intensity centroid, y intensity centroid, maximum peak height, maximum peak
location, interval set score, and interval set size [46, 84]. The last two features measure
histogram properties used directly by the PHOENIX segmentation algorithm used in this
research and provide useful image similarity information. Since we use a gray scale image
to compute edge information and object contrast during the evaluation process, we also
compute the twelve features for the Y (luminance component) image as well. Combining
the image characteristic data from these four components yields a list of 48 elements. In ad-
dition, we utilize two external variables, time of day and weather conditions to characterize

75

Long Tfeira Population

Image Statistics External Variables Fitness

i i i i i i i i 1111
i i i i i i i i i i 11
i i i i i i i i i i i i

i i i i 11 i i i i i i

0.75 134 2007 180 10 am -"• Sunny 17 — 9 I i i i i i i i 11 i i
i i i i 11 i i i i i i

W Q Q c, Cl+1 <i«, Aj Aff

M 1

Figure 5.3: Representation of a knowledge structure used by the genetic learning system. The
image characteristics (image statistics and external variables), segmentation parameters, and the
image quality or fitness of the parameter set are stored in each structure.

each image. The external variables are represented symbolically in the list structure (e.g.,
time = 9am, 10am, etc. and weather conditions = sunny, cloudy, hazy, etc). The distances
between these values are computed symbolically when measuring image similarity. The two
external variables are added to the list to create an image characteristic list of 50 elements.
The representation of an individual knowledge structure of the genetic population is shown
in Fig. 3, where I is the number of image statistics, J is the number of external variables
and N is the number of segmentation parameters.

5.3.2 Genetic Learning System

Once the image statistics and external variables have been obtained, the genetic learning
component uses this information to select an initial set of segmentation algorithm param-
eters. A knowledge-based system is used to represent the image characteristics and the
associated segmentation parameters. The image statistics and external variables shown in
Fig. 3 form the condition portion of the knowledge structure, C\ through CI+J, while the
segmentation parameters indicate the actions, Ai through AN, of the knowledge structure.
The fitness, W, which ranges in value from 0.0 to 1.0, measures the quality of the segmenta-
tion parameter set. Note that only the fitness value and the action portion of the knowledge
structure are subject to genetic adaptation; the conditions remain fixed for the life of the
knowledge structure.

When a new image is provided to the genetic learning system, the process begins by
comparing the image characteristics of the new image (Fig. 2) with the knowledge struc-
tures in the long-term population (also called global population, Fig. 3). The long-term

76

population represents the accumulated knowledge of the adaptive system obtained through
previous segmentation experience. The algorithm computes a ranked list of individuals in
the population that have characteristics similar to the new image. Ranking is based on the
normalized Euclidean distance between the image characteristic values as well as the fitness
of the knowledge structure. The normalized distance between images A and B is computed
using

CiA — CiMIN CiB — CiMIN
distAB =]T) Wi

»=i CiMAX - CiMIN CiMAX ~ CiMIN

where CiMIN is the minimum value of the ith numeric or symbolic feature in the global
population, CiMAX is the maximum value of the ith feature in the global population, and
Wi is the weight attached to the ith feature. For the results presented in this paper, the
ranges are normalized and the Wi values have been set to 1 so that each feature contributes
equally to the distance calculation.

When the distance between an image and several members of the global population are
the same (e.g., if a previous image contributed multiple individuals to the global population),
fitness values are used to select the best individuals from the population. Temporary copies
of the highest ranked individuals are used to create the initial or seed population for the
new image.

Once the initial or seed population is available, the genetic adaptation cycle begins. (The
seed population is the same as the initial population, when the genetic algorithm begins its
search operation.) The segmentation parameter set in each member of the seed population
is used to process the image. The quality of the segmented results for each parameter
set is then evaluated. If the maximum segmentation quality for the current population
is above a predefined threshold of acceptance or other stopping criteria are satisfied, the
cycle terminates and the high quality members of the current image population are used
to update the global population. Less fit members of the global population are discarded
in favor of higher strength individuals obtained from processing the current image. In this
manner, the system is able to extend the knowledge of the adaptive segmentation system
by incorporating new experience into the knowledge database.

Alternatively, if after segmenting and evaluating the performance of the current or local
(also called short-term) population, the system has not achieved acceptable segmentation
quality and any other termination criteria are not satisfied, the genetic recombination op-
erators are applied to the members of the current population. The crossover and mutation
operators are applied to the high strength individuals in the population, creating a new set
of offspring which will theoretically yield better performance [12, 41]. The new population
is supplied back to the image segmentation process, where the cycle begins again. Each
pass through the loop (segmentation-evaluation-recombination) is known as a generation.

77

The cycle shown continues until the maximum fitness achieved at the end of a generation
exceeds some threshold or other termination criteria are satisfied. The global population is
updated and the system is then ready to process a new image.

5.3.3 Segmentation Algorithm

Since we are working with color imagery in our experiments, we have selected the PHOENIX
segmentation algorithm developed at Carnegie-Mellon University and SRI International [46,
59, 84]. The PHOENIX algorithm is a recursive region splitting technique. An input image
typically has red, green, and blue image planes, although monochrome images, texture
planes, and other pixel-oriented data may also be used. Each of the data planes is called a
feature or feature plane. The algorithm recursively splits nonuniform regions in the image
into smaller subregions on the basis of a peak/valley analysis of the histograms of the red,
green, and blue image components simultaneously. Segmentation begins with the entire
image, considered to be a single region, based on histogram and spatial analyses. If the
initial segmentation fails, the program terminates; otherwise, the program fetches each of
the new regions in turn and attempts to segment them. This process terminates when
the recursive segmentation reaches a predefined depth, or when all the regions have been
segmented as finely as various user-specified parameters permit.

PHOENIX contains seventeen different control parameters [46], fourteen of which are
used to control the thresholds and termination conditions of the algorithm. There are about
1040 conceivable parameter combinations using these fourteen values. For the outdoor image
sequence that we have used, these parameters can be divided into three groups according
to their effect on segmentation results.

Group I: Essential PHOENIX Parameters.

Parameter (default) Description Range

Hsmooth (9) The width of the averaging window used to
smooth each feature histogram.

1-100

Maxmin (160) The minimum acceptable ratio of apex height
to higher shoulder.

100-104

78

Group II: Important PHOENIX Parameters.

Parameter (default) Description Range

Absscore (70) The lowest interval set score that will be
passed to the threshold phase.

0 - 1000

Splitmin (4) Direct manipulation of the segmentation
queue, for which fetched regions are to be seg-
mented further.

1-200

Noise (10) The size of the largest area that is to be con-
sidered noise.

0-104

Height (20) The minimum acceptable apex height as a
percentage of the second highest apex.

0-100

Group III: Less important PHOENIX parameters

The rest of the parameters have relatively much less influence on the segmentation result.

To minimize the problem complexity, four parameters have been selected for GA to
search for the combination that gives best segmentation result using PHOENIX. Thirty
two values are sampled for each of these four parameters. This results in a search space
whose size is about one million. The parameters are shown in Table 1, together with the
formula by which they are sampled, and the associated test range for each. In Section 4,
we will present results using the first two parameters (hsmooth and maxmin). In Section 5,
we show scaling results when we adapt all the four parameters.

5.3.4 Segmentation Evaluation

After the image segmentation process has been completed by the PHOENIX algorithm, we
must measure the overall quality of the segmented image. There are a large number of
segmentation quality measures [7] that have been developed in the past, although none has
achieved widespread acceptance as a universal measure of segmentation quality. In order
to overcome the drawbacks of using only a single quality measure, we have incorporated
an evaluation technique that uses five different quality measures to determine the overall
fitness for a particular parameter set. In the following, boundary pixels refer to the pixels
along the borders of the segmented regions, while the edges obtained after applying an
edge operator are called edge pixels. The five segmentation quality measures that we have
selected are,

79

1. Edge-Border Coincidence: Measures the overlap of the region borders in the image
acquired from the segmentation algorithm relative to the edges found using an edge
operator. In this quality measure, we use the Sobel operator to compute the necessary
edge information. The original, unthinned Sobel edge image is used to maximize
overlap between the segmented image and the edge image. Edge-border coincidence
is defined as follows (refer to Fig. 4(a)).

Let E be the set of pixels extracted by the edge operator after thresholding and S
be the set of pixels found on the region boundaries obtained from the segmentation
algorithm:

E = {PI,P2,---,PE} = {{xpi,ypi),{xP2,yP2),---,(xpE,ypE)} and

S = {qi,q2,---,Qs} = {(xqi,yqi),(xg2,yq2),---,{xqs,yqs}, then

Edge-border Coincidence = .^,
n(E)

EnS = {(xk,yk),k = 1, • • •,m, where(xy,yk) € E and S}, and

n{A) = the number of elements in set A.

2. Boundary Consistency: Similar to edge-border coincidence, except that region borders
which do not exactly overlap edges can be matched with each other. In addition, region
borders which do not match with any edges are used to penalize the segmentation
quality. The Roberts edge operator is used to obtain the required edge information.
As with the edge-border coincidence measure, the Roberts edge image is not thinned
to maximize the overlap between images. Boundary consistency is computed in the
following manner (see Fig. 4(b)).

The first step is to find neighboring pixel pairs in the region boundary and edge results.
For each pixel in the segmented image region boundary results, S, a neighboring pixel
in the edge image, E, that is within a distance of dmax is sought. A reward for locating
a neighbor of the ith boundary pixel is computed using

Ri =
"•max Q-i — ,

""max

where dmax = 10, and d{ = the distance to the nearest edge pixel.

Thus, if the pixels had overlapped, Ri = (10 - 0)/10 = 1. Pixels that do not directly
overlap contribute a reward value that is inversely related to their distance from each
other. As matching pairs of pixels are identified, they are removed from the region

80

boundary and edge images (5 and E). The total reward for all matching pixel pairs
is obtained using

RTOTAL = X^ R*
i

Once all neighboring pixel pairs have been removed from E and 5, the remaining (i.e.,
non-overlapping and non-neighboring) pixels correspond to the difference between the
two images. The average number of these pixels is used to compute a penalty

»(all remaining pixels in E and S)
P= - .

Finally, since the value of boundary discrepancy must be positive, we define an inter-
mediate value, M, as M = {RTOTAL - P)/n(E), then

Boundary Consistency = M, if M > 0, and zero otherwise.

3. Pixel Classification: This measure is based on the number of object pixels classified
as background pixels and the number of background pixels classified as object pixels.
Let G be the set of object pixels in the groundtruth image and R be the set of object
pixels in the segmented image (see Fig. 4(c)). Formally, we have

G = {PI,P2,---,PA} = {(xpi,ypi),{xp2,yP2),---AxpA,ypA)} and

R={qi,Q2,---, IB) = {(Xql, Vgl), (Xq2, Vq2), ' • ' i {XqB, VqB} ■

Since pixel classification must be positive, we define the intermediate value TV as
follows

N = 1
(n(G) - n(G n R)) + (n(R) - n{G n R))

n{G)

where Gf\R = {(xk,yk),k= l,---,m, where (xk,yk) € G and R}

Using the value of N, pixel classification can then be computed as

Pixel Classification = N, if N > 0, and zero otherwise.

4. Object Overlap: Measures the area of intersection between the object region in the
groundtruth image and the segmented image, divided by the object region. As defined
in the pixel classification quality measure, let G be the set of object pixels in the
groundtruth image and R be the set of object pixels in the segmented image (Fig.
4(d)). Object overlap can be computed as

Object Overlap (Gnfi)

where GC\R= {(xk,yk),k= l,---,m, where (xk, yk) € G and R}

81

5. Object Contrast: Measures the contrast between the object and the background in the
segmented image, relative to the object contrast in the ground-truth image. Let G be
the set of object pixels in the groundtruth image and R be the set of object pixels in
the segmented image, as shown in Fig. 4(a). In addition, we define a bounding box (X
and Y) for each object region in these images. These boxes are obtained by enlarging
the size of the minimum bounding rectangle for each object (G and R) by 5 pixels on
each side. The pixels in regions X and Y include all pixels inside these enlarged boxes
with the exception of the pixels inside the G and R object regions. We compute the
average intensity for each of the four regions (G, R, X, and Y) using the equation
II = YJJ=\

X
 I{J)ILma.x, where I(j) is the intensity of the jth pixel in some region L

and Lmax is the total number of pixels in region L. The contrast of the object in the
groundtruth image, CGT, and the contrast of the object in the segmented image, Csi,
can be computed using

CGT =
Ia-Ix

la
CSI =

IR-IY

IR

The object contrast quality measure is then computed as

Object Contrast = ——, if CGT > Csi
CGT

CGT

CSI
, if CGT < Csi-

The maximum and minimum values for each of the five segmentation quality measures
are 1.0 and 0.0, respectively. The first two quality measures are global measures since they
evaluate the segmentation quality of the whole image with respect to edge information.
Conversely, the last three quality measures are local measures since they only evaluate the
segmentation quality for the object regions of interest in the image. When an object is
broken up into smaller parts during the segmentation process, only the largest region which
overlaps the actual object in the image is used in computing the local quality measures.
In the experiments described in this chapter, we combine the five quality measures into a
single, scalar measure of segmentation quality using a weighted sum approach. Each of the
five measures is given equal weighting in the weighted sum. Elsewhere we have investigated
a more complex vector evaluation approach that provides multidimensional feedback on
segmentation quality [12, 13].

82

5.4 Segmentation Results

5.4.1 Segmentation Using Genetic Algorithm

The adaptive image segmentation consists of the following steps:

1. Compute the image statistics.
2. Generate an initial population.
3. Segment the image using initial parameters.
4. Compute the segmentation quality measures.
5. WHILE not < stopping conditions^ DO
5a. select individuals using the reproduction operator
5b. generate new population using the crossover

and mutation operators
5c. segment the image using new parameters
5d. compute the segmentation quality measures

END
6. Update the knowledge base using the new knowledge structures.

We have tested the performance of the adaptive image segmentation system on a time
sequence of outdoor images. The outdoor image database consisted of twenty frames cap-
tured using a JVC GXF700U color video camera. The images were collected approximately
every 15 minutes over a 4 hour period. A representative subset of these images is shown in
Fig. 5. The original images were digitized to be 480 X 480 pixels in size but were subse-
quently subsampled (average of 4 x 4 pixel neighborhood) to produce 120 X 120 pixel images
for the segmentation experiments. Weather conditions in our image database varied from
bright sun to overcast skies. The changing environmental conditions caused by movement
of the sun also created varying object highlights, moving shadows, and many subtle contrast
changes between the objects in the image. Also, the colors of most objects in the image are
subdued. The auto-iris mechanism in the camera was functioning, which causes a similar
appearance of the background foliage throughout the image sequence. Even with the auto-
iris capability built into the camera, there was still a wide variation in image characteristics
across the image sequence. This variation required the use of an adaptive segmentation
approach to compensate for these changes.

The car in the image is the object of interest for the pixel classification, object overlap,
and object contrast segmentation quality measures. The groundtruth image for the car was
obtained by manual segmentation of Frame 1 only for the image sequence. The Sobel and
Roberts edge operator results, which are used in the computation of the edge-border coin-
cidence and boundary consistency measures respectively, are obtained from the gray scale

83

image (Y component of the YIQ image set) for each frame [14]. For the results presented
in this section, the maxmin and hsmooth parameters of the PHOENIX algorithm were used
to control the segmentation quality and the segmentation quality surfaces were defined for
preselected ranges of these two parameters as shown in Table 1. All the parameters that
were not optimized were set at the default PHOENIX parameter values. These parame-
ters remain fixed throughout all the experiments. By selecting 32 discrete values (5 bits
of resolution) for each of these parameter ranges, the search space contained 1024 different
parameter combinations. Fig. 6 presents the five individual segmentation quality surfaces
and the combined surface for Frame 1 of the database. Notice that the surfaces are complex
and hence, would pose significant problems to traditional optimization techniques.

The genetic component used a local or seed population size of 10, long-term population
size of 100, a crossover rate of 0.8, and mutation rate of 0.01. A crossover rate of 0.8
indicates that, on average, 8 out of 10 members of the population will be selected for
recombination during each generation. The mutation rate of 0.01 implies that on average,
1 out of 100 bits is mutated during the crossover operation to insure diversity in the local
population. The stopping criterion for the genetic process contains three tests. First, since
the global maximum for each segmentation quality surface was known a priori (the entire
surface was precomputed to evaluate results), the first test is the location of a parameter
combination that produces quality of 95% or higher. In experiments where the entire
surface is not precomputed, this test would be discarded. Second, the process terminates
if three consecutive generations produce a decrease in the average population fitness for
the local population. Third, if five consecutive generations fail to produce a new maximum
value for the average population fitness, the genetic process terminates. If any one of these
three conditions is met, the processing of the current image is stopped and the maximum
segmentation quality currently in the local population is reported.

Numerous experiments [12, 14] were performed for training and testing to measure the
optimization capabilities of the genetic algorithm and to evaluate the reduction in effort
achieved by utilizing previous segmentation experience. In the following we present some
of these results.

5.4.2 Performance Comparison with Other Techniques

Since there are no other known adaptive segmentation techniques with a learning capa-
bility in both the computer vision and neural networks fields to compare our system with,
we measured the performance of the adaptive image segmentation system relative to the
set of default PHOENIX segmentation parameters [46, 84] and a traditional optimization
approach. The default parameters have been suggested after extensive amounts of testing
by researchers who developed the PHOENIX algorithm [46]. The parameters for the tra-

84

ditional approach are obtained by manually optimizing the segmentation algorithm on the
first image in the database and then utilizing that parameter set for the remainder of the
experiments. This approach to segmentation quality optimization is currently a standard
practice in state-of-the-art computer vision systems. Fig. 7 illustrates the quality of the
segmentation results for Frames 1 and 11 using the default parameters and the traditional
approach and contrasts this performance with our adaptive segmentation technique. By
comparing the extracted car region in each of these images, as well as the overall segmen-
tation of the entire image, it is clear that the adaptive segmentation results are superior to
the other methods. For the 20 frames the average segmentation quality for the adaptive
segmentation technique is 95.8%. In contrast, the performance of the default parameters
is only 55.6% while the traditional approach has a 63.2% accuracy. The size of the search
space in these experiments is 1024, since each of the two PHOENIX parameters are repre-
sented using 5 bits. The price paid for achieving consistent higher quality of segmentation
is the average number of times (2.5) one has to go through the genetic loop. Thus, only
2.4% of the search space is explored to achieve the global maximum. Many additional tests,
including the comparison with random walk approach, are performed to demonstrate the
effectiveness of the reproduction and crossover operators [12].

5.4.3 Demonstration of Learning Behavior

The above experiments were conducted in a parallel fashion, i.e., all training and all testing
was performed without the aid of previous segmentation experience. Although the testing
experiments used the knowledge acquired during training, the tests were still performed
in parallel. None of the segmentation experience obtained during testing was applied to
subsequent testing images. The following multiple day experiment shows that experience
can be used to improve the segmentation quality over time. The test simulates a four day
scenario where the frequency of image acquisition decreases to approximately one hour.
The order of the images in this test is 1, 5, 9, 12, 16, 20, 3, 7, 11, 14, 18, 2, 6, 10, 13, 17,
4, 8, 15, 19. Each group of images in the sequence of Frames (1, 5, 9, 12, 16, 20), (3, 7, 11,
14, 18), (2, 6, 10, 13, 17), or (4, 8, 15, 19) was designed to represent a collection of images
acquired on a different day.

The genetic population of the first frame in the image sequence was randomly selected.
Once the segmentation performance for that frame was optimized by the genetic algorithm,
the final population from that image was used to create the initial global population. This
global population was then used to select the seed population for subsequent frames in
the image sequence. The global population size was set to 100 for these experiments to
insure a diversity of segmentation experience in the population. While the size of the
global population remained below 100 members (prior to processing 10 frames), the final

85

populations for each image were merely added to the current global population. After
the size of the global population reached 100 individuals, the final populations from each
successive image had to compete with the current members of the global population. This
competition was based on the fitness of the individuals; highly fit members of a new local
population replaced less fit members of the global population, thus keeping the size of the
global population constant. Fig. 8 presents the performance results achieved by the adaptive
image segmentation system during each of the three sequential tests. The images in the
first "day" (frames 1, 5, 9, 12, 16, 20) show a continually decreasing level of computational
effort. When the second sequence (frames 3, 7, 11,14,18) is encountered, the effort increases
temporarily as the adaptive process fills in the knowledge gaps present as a result of the
differences between the images in each sequence. The image sequence for the third "day"
(frames 2, 6, 10, 13, 17) was handled with almost no effort by the genetic learning. Finally,
the fourth image sequence (frames 4, 8, 15, 19) requires no effort by the genetic learning at
all; each image is optimized by the information stored in the global population. Twelve of
the twenty frames in this test were optimized using the global population.

5.5 Scaling the Number of Parameters

For the results presented in Section 4, we selected only two (hsmooth and maxmin) pa-
rameters of the PHOENIX algorithm. In this section, we present details when we select
four parameters [hsmooth, maxmin, splitmin and height) for adaptive image segmentation.
In this case the size of the search space is about 1 million. Table 1 shows the parameter
values. As the number of segmentation parameters for adaptation increases, the number
of points to be visited on the surface will also increase. However, genetic algorithms offer
a number of advantages over other search techniques. These include parallel search from
a set of points with the expectation of achieving the global maximum. Unlike the Hough
transform, which is essentially an exhaustive search technique commonly used in Computer
Vision, it is expected that the genetic algorithm will visit only a small percentage of the
search space to find an adequate solution that is sufficiently close to the global maximum.

5.5.1 Search Space and GA Control Mechanism

Visualization of the Search Space: Visualization of the search space allows one to
understand its complexity—the number and distribution of local peaks and the location of
global maximum. But this 5-dimensional space (four parameters plus the fitness or quality
of image segmentation) is difficult to be visualized with traditional methods. So we project
this 5-dimensional data into a 4-dimensional space by slicing it into 32 pieces along the

86

Height axis. Fig. 9 shows the 3-D volume representation of this 4-dimensional data using
the brick and slice visualization technique, where the x,y,z axes are maxmin, hsmooth,
and splitmin respectively, and the color associated with each point represents the combined
segmentation quality for a given parameter set. Blue color represents segmentation quality
of 0, while the red color represents 100% quality.

GA Control Mechanism: GA learning requires 3 operations: selection, crossover, and
mutation. In our approach, a chromosome is formed by combining the 4 segmentation
parameters together. Using our method of crossover point selection, the ordering of these
parameters within the chromosome does not affect the search process. Tests are carried
out to select the best control parameters for GA, which include the number of crossover
points, crossover rate, method of selection, population size, and quality threshold. The
results given below are averaged over 1000 independent tests.

Crossover Rate: Table 2 shows the number of segmentations that are needed for frame
1 for different crossover rates. The threshold for minimum acceptable segmentation quality
is 95%, population size varies from 50 to 200. We can see that a lower crossover rate leads
to smaller number of total segmentations.

Population Size and Number of Crossover Points: Table 3 shows the number of
segmentations required for different population sizes and crossover points. The threshold
for acceptance of segmentation quality is 95% and the crossover rate is set at 80%. From
the results we can see that using more crossover points and larger population size, the total
number of required segmentations can be reduced. This experiment also showed that the
total number of segmentations will not reduce further when population size is greater than
500. A complete scenario for crossover operation using four points is shown in Fig. 10.

Segmentation Quality Threshold: Table 4 shows how different thresholds for mini-
mum acceptable segmentation quality affect the total number of required segmentations.
The difference is not significant between 90% and 95% because these segmentation qualities
are quite close.

The results presented for Frame 1 in Tables 2-4 show that the number of points that are
visited on the surface varies from 0.9% to 0.3% for 95% quality of segmentation. In the best
case only 0.28% of the search space is visited to achieve 99.89% (threshold is 95%) quality
of segmentation.

87

5.5.2 Genetic Algorithms and Hill Climbing

Integrated search techniques have the potential for improved performance over single opti-
mization techniques since these can exploit the strengths of the individual approaches in a
cooperative manner [1, 13]. One such scheme which we describe in this section combines a
global search technique (genetic algorithms) with a specialized local search technique (hill
climbing). Hill climbing methods are not suitable for optimization of multimodal objective
functions, such as the segmentation quality surfaces, since they only lead to local extrema.
The integrated scheme provides performance improvements over the genetic algorithm alone
by taking advantage of both the genetic algorithm's global search ability and the hill climb-
ing's local convergence ability. In a sense, the genetic algorithm first finds the hills and the
hill climber climbs them.

The search through a space of parameter values using hill climbing consists of the follow-
ing steps: (1) Select a starting point; (2) Take a step in each of the fixed set of directions;
(3) Move to the best alternative found; and (4) Repeat until a point is reached that is higher
than all of its adjacent points. An algorithmic description of the hill climbing process is
given below.

88

Table 5.1: PHOENIX parameters used for adaptive image segmentation.

Parameter Sampling Formula Test Range

Hsmooth:

hsindex G [0 : 31]

hsmooth = 1 + 2 • hsindex 1 — 63

Maxmin:

mmindex G [0 : 31]

ep = log(100) + 0.05 • mmindex

maxmin = exp(ep) + 0.5

100 — 471

Splitmin:

smindex € [0 : 31]

splitmin = 9 + 2 • smindex 9 — 71

Height:

htindex G [0 : 31]

height = 4 + 2 • htindex 4 — 66

Table 5.2: Number of segmentations under varying population size and crossover rate. The thresh-
old for minimum acceptable segmentation quality was set at 95%.

Population Crossover Rate 2-Point Crossover

50 80% 9439

50% 6077

100 80% 5805

50% 4675

200 80% 7548

50% 5068

89

S ■ Set of border pixels

R ■ Segmented
object region

n(R)-No.of
objectpixek

Edge Image Segmented Image

(a)

Edge-Border Coincidence

<"*,

•• }

S'- s -Ens

^^ciicle of

"•""»"W
— I

— E' — s-

(b) Boundary Consistency

7>-
Bounding

boxX
G m Oxoandtnith

object legion
n(G)-Naof

object pixels

G-(GflR)-
Object pixels
classified as
background

R - (GAR) -
Background
pixels classified
as object

(c) Pixel Classification

(d) Object Overlap

Figure 5.4: Illustration for the quality measures used in the adaptive image segmentation system,
(a) Edge-border coincidence, (b) Boundary consistency, (c) Pixel classification, (d) Object overlap.
Object contrast is defined by using the symbols shown in the center figure in (a) and the left most
figure in (c).

90

(a) Frame 1 (b) Frame 11

Figure 5.5: Sample outdoor images used for adaptive segmentation experiments.

Table 5.3: Number of segmentations under varying population size and crossover points (Segmen-
tation quality threshold = 95% , Crossover rate = 80%).

Population 1-Point Crossover 2-Point Crossover 4-Point Crossover

10 7102 6553 5941

100 4960 5805 5528

200 4131 3939 3900

500 3575 3332 2878

Table 5.4: Number of segmentations under varying threshold (Population = 500, Crossover rate

80%).

Threshold 1-Point Crossover 2-Point Crossover 4-Point Crossover

95% 3575 3332 2878

90% 2943 2788 2325

91

(a) (b)

>0.

' Miii!i!nl!/ili!!i! |frip#?]
imfümlijuüto* ! liü

:'"<%.

(c) (d)

: cc«oi •<«._.

(e) (0

Figure 5.6: Segmentation quality surfaces for Frame 1. (a) Edge-border Coincidence, (b) Bound-
ary Consistency, (c) Pixel Classification, (d) Object Overlap, (e) Object Contrast, (f) Combined
Segmentation Quality.

92

Adaptive Technique Default Parameters

^a
Traditional Approach

7^7

(a) (b) (c)

0 it j!^
■

m j ■
^i? *^^" f*"""S

a
■

■ " a •

■ ■ rf

(d) (e) (f)

Figure 5.7: Segmentation of Frame 1 (a-c) and Frame 11 (d-f) for the adaptive technique, default
parameters, and the traditional approach.

93

8 9 10 11 12 13 14 15 16 17 18 19 20

Frame Number

Figure 5.8: Performance of the adaptive image segmentation system for a multiple day sequential
test.

splitmin

maxmin

(a) Projection with height = 10 (b) Coordinate axes

Figure 5.9: Volume representation of segmentation parameter search space, (a) The original 5-
dimensional data (hsmooth, splitmin, maxmin, height, segmentation quality) is projected along
height axis, where the color represents the fitness or segmentation quality value, (b) The coordinate
system.

94

a) Before Crossover 1

parent 1

parent 2 m n^
b) After Crossover

childl

child 2
k:W:.*-ftW:y:S:i:fo

 i

(a)

Decimal Representation Binary Representation

Crossover Points

22 10 6 15

2 19 21 8

22 18 7 15

2 11 20 8

1011 0 0 1 010 0011 3 01 111

0001 3 10 311 1010 L 01 000

♦
1011 0 10 010 0011 L 01 111

0001 b 01 Oil 1010 3 01 0 0 0

(b)

Figure 5.10: Genetic algorithm crossover operation, (a) Scheme for doing 4-point crossover with
each chromosome containing four parameters, (b) A complete scenario for one crossover operation.

95

la. Select a point xc at random.
lb. Evaluate the criterion function, i.e., obtain V(xc).
2a. Identify points xi,- ■ -,xn adjacent to xc.
2b. Evaluate the criterion function, i.e., obtain V{x\), • • •, V(xn).
3. Let V(xm) be the maximum of V{x{) for i = 1, • • •, n.
3a. If V{xm) > V(xc) then

set xc = xm, V(xc) = V(xm).
goto Step 2.

3b. Otherwise, stop.

In this algorithm, a set of points that are "adjacent" to a certain point can be defined
in two ways. First, it can denote the set of points that are a Euclidean distance apart
from the given point. Thus, the adjacent points are located in the neighborhood of the
given point. Second, "adjacent" points can denote the set of points that are unit Hamming
distance apart from the given point pair. Each point in this set differs by only one bit value
from the given point in binary representation of points. It defines the set of points with
varying step size from the given point. The set of Hamming adjacent points was used in
this research. Hamming adjacent points have an advantage over Euclidean adjacent points
in our implementation because all the segmentation parameter values are represented as
binary strings when using the GA. The set of Hamming adjacent points also represents the
set of points which can be generated by a genetic mutation operator from the given point.

A conventional hill climbing approach, as described above, finds the largest V(xm) from
V(xi),i = 1, • • -,n, and the search moves to its corresponding point, xm. For a space of n
adjacent points, it requires n function evaluations to make each move. To reduce the cost of
evaluating all the adjacent points before making each move, the approach is designed to try
alternatives only until an uphill move is found. The first uphill move is undertaken without
checking whether there are other (higher) possible moves. After the hill climbing process
has examined all the adjacent points by flipping each bit in the binary representation of
the current point, in turn, without finding an uphill move, the current point is taken as a
local maximum. The algorithmic description of the hill climbing process used in the search
scheme is as follows:

1- Select a starting point xc with fitness value V(xc) from the
genetic population.

2. Set i = 0.
3. Set j = i.
4a. Generate an adjacent point xa by flipping the ith bit in xc.
4b. Obtain V{xa). Set i = (i + 1) mod n.
5. If V(xa) >V(xc) then

96

goto Step 3.
Else if i < j then

goto Step 4.
Otherwise, pass the control to the GA.

5.5.3 Experimental Results

There are several possibilities in which genetic algorithms and hill climbing can be used.
In one case the control moves back and forth between GA and hill climbing [12, 13]. In
this approach when GA finds a new maximum, hill climbing is used to keep climbing until
local maximum or termination condition is satisfied. If a local maximum is found then GA
is again used to find a new maximum. For the experiments presented in this Chapter this
approach is used for the first frame only. Specifically, the integrated technique used is given

below:

1. Perform GA and hill climbing search for frame 1 using a population size of 10 (cho-
sen from available hardware consideration) and 4 point crossover operation with a
crossover rate of 0.8 (same as in Section 4). The goal here is to use small popu-
lation size to achieve the desired segmentation quality with a minimum number of
segmentations.

2. For frame 2 to frame 20 perform hill climbing with accumulated knowledge structures.
The parameter set generated from previous frames is used to hill climb. The best result
obtained for the current frame is kept as a new knowledge structure and added to the
parameter set for hill climbing for the next frame.

After we are done with frame 20, a total of 29 knowledge structures are accumulated, with
19 of them generated by hill climbing.

The experimental results for frame 1 are shown in Table 5. The results show that for
95% threshold for image segmentation quality, the technique helps to reduce the required
number of segmentations by almost half. For low segmentation quality threshold (90%),
this effect is not dramatic.

Fig. 11 summarizes the performance of the technique for frames 1 to 20, and compares
it with the performance of the default parameter set of the PHOENIX algorithm [46].
The performance corresponds to the parameter set in the population that has the highest
fitness. The average performance improvement for the technique over the default parameter
set is about 50%, performance improvement over the technique that uses the parameter set

97

Table 5.5: Performance comparison between pure GA and GA with hill climbing (crossover points
= 4, crossover rate = 80%, mutation rate » 1%).

Population = 10 Genetic w/o hill climbing Genetic with hill climbing

Threshold = 95%

Threshold = 90%

5941

1720

3340

1631

generated by GA plus hill climbing learning for frame 1 only (no subsequent hill climbing)
is also significant. This shows that learning from frame 1 does provide a good starting
point for hill climbing for subsequent frames. The maximum improvement over the default
parameter set shown in Fig. 11 is 107.8%.

Fig. 12 shows the sample segmentation results obtained by using the default parameter
set and the parameter set generated by the technique. Using the default parameter set, it
is seen that the car does not show up at all in the segmentation result of frame 16, but the
corresponding result using GA and hill climbing is quite good. The overall results show that
by combining genetic search and hill climbing techniques the performance improvement is
significant when the search space is large.

5.6 Conclusions

The goal of this research was to perform adaptive image segmentation and evaluate the
convergence properties of the closed-loop system using outdoor data. In this Chapter we
have provided sample results. Using the outdoor data we have shown in [12, 13, 14] that the
performance improvement provided by the adaptive system was consistently greater than
30% over the traditional approach or the default segmentation parameters [46, 84].

The adaptive image segmentation system can make use of any segmentation technique
that can be controlled through parameter changes. The adaptive segmentation system is
only as robust as the segmentation algorithm that is employed. It may be possible to keep
multiple segmentation algorithms available and let the genetic process itself dynamically
select the appropriate algorithm based on image characteristics. Further, it is possible to
define various evaluation criteria which can be automatically selected and optimized in a
complete vision system. In a complete computer vision system, the segmentation evaluation
component can be replaced by the object recognition component(for example, see [64]). In

98

8 10 12
Frame Number

14 16 18 20

Figure 5.11: Performance comparison for techniques based on (a) default parameters (+), (b)
GA plus hill climbing to generate the best parameter set for frame 1 only (*), and (c) integrated
technique, (parameter set generated for frame 1 in the same manner as in (b) and hill climbing for
all subsequent frames (o)).

our adaptive image segmentation system, the focus is the image segmentation component.
Therefore, we supplied the manually generated groundtruth image to the segmentation
evaluation component and used local and global measures. Elsewhere, we have optimized
both global and local measures in a multi-objective optimization framework [13]. In the
future we plan to use a data set with dramatic environmental variations and we will utilize
several segmentation algorithms. Ultimately, we will incorporate the adaptive segmentation

99

component into a learning integrated object recognition system.

100

Default Parameter Genetic + Hill Climbing

(a)

*
'sP ■

Lrsi/

jC3 ̂ _

0

(b)

M v^g>u£/

ra^ '

J& ö

fäT'^^aBa
- _■ **

(c)

a jk

* tr"
•

(d)

p

u jfeLy-5 ■*■ ■

gJpOd? 3 ft
4 >-

r" o a D

>u. «/* " 0
• I

rf*—'s- n •sm g .Jj

(e) (0
Figure 5.12: Segmentation performance comparison using default and learned parameters, (a) and
(b) Frame2, (c) and (d) Frame 3, (e) and (f) Frame 16.

101

Chapter 6

Integrating Context with Clutter
Models for Target Detection

For an automatic target detection and recognition (ATD/R) system operating in a cluttered
environment, it is important to develop models not only for man-made targets but also for
various background clutters. Because of the high complexity of natural backgrounds, our
approach to build the clutter models is based on learning from real examples. The contextual
parameters, which describe the environmental conditions for each training example, are used
in a reinforcement learning paradigm to improve the learned clutter models and enhance
target detection performance under multi-scenario situations. We present experimental
results using second generation infrared imagery.

6.1 Introduction

Automatic Target Detection/Recognition (ATD/R) is a challenging application for the gen-
eral techniques developed by image understanding communities [11]. There are several
reasons that contribute to this challenge: (a) a target may appear in many different back-
grounds and it tends to be mixed up with its surroundings, (b) signatures of a target
strongly depends upon the background surrounding the target and environmental condi-
tions, and (c) signatures of a target are generally not repeatable. As a result, early stage
image segmentation for extracting the target from the background is generally unreliable.
Since the ATD/R algorithms are commonly used in a sequential manner, any target we fail
to detect during the detection stage will be lost forever. In the detection stage, it is desired
to single out every suspicious target area (region-of-interest) in the image, even at the cost

102

that it may include some false target areas. Then it is the responsibility of the following
recognition stage to verify the identity of each real target and to filter out the false targets.
An ideal ATD/R system is the one that (1) does not miss any potential target area in the
detection stage, and (2) does not verify any non-target area as target in the recognition
stage.

To achieve the goal of high detection probability and simultaneous low false-alarm rate,
we have developed an ATD/R strategy called Background Model Aided Target Detection
and Recognition (BMATDR). The main idea of BMATDR is to use explicit background
clutter models, as well as target models, throughout the ATD/R process. The clutter
models are represented by a bank of statistical models that are constructed using various
multiresolution and other image feature groups through a self-organizing learning process
[74, 75]. Although these statistical models characterize the background clutter using a
variety of information present in a training image, they do not utilize any non-imagery
contextual information associated with each training image. Because we want to successfully
detect targets under multi-scenario situations, and the image metrics commonly used to
characterize images do not correlate well with performance of an ATD/R system, it is
essential to integrate the contextual information with clutter models for target detection.
In this paper, we present a reinforcement learning based approach that improves the target
detection performance of background clutter models by using the non-imagery information.
The non-imagery contextual information accompanying a training image is represented by
a set of context parameters, and a certain setting of these contextual parameters is referred
to as a contextual condition. We present results using 40 second generation infrared images.

6.2 Learning Background Models via Self-Organizing
Maps

In recent years, two streams of approaches have been developed by ATR researchers to
characterize the natural background in infrared images. The first one is using heat transfer
equations to model the thermal behaviors of different materials. The second stream of
approaches focuses on the image features rather than the thermal-physical meaning behind
these images. In our previous work, we followed the second approach, and developed a image
feature-based background clutter modeling system [74]. Several image feature groups were
developed based on multiresolution analysis and local geometric analysis [9]. All the image
features developed are computed from rectangular regions in an image, which we refer to
as feature cells. Based on each feature group, which consists of not more than three feature
values, a statistical model was learned from training images and represented by a 2D self-
organizing map [75].

103

Target
Verification

K Potential *_/^Y^>U
Target Area/^^jZ8.^

Figure 6.1: Learning background clutter models for target detection.

Since natural backgrounds can occur in a wide variety, background characterization
must rely on multiple features. To efficiently use the available features, we need a proper
representation to hold all the information together. One way to attack such a problem is
to organize all the features into a high dimensional feature vector (i.e. long feature vector)
and classify the backgrounds based on the position of the vector in some high dimensional
feature space. The other way is based on short feature vectors. The key ideas behind
this later scheme are: we need to understand the physical meaning of each feature and
put each feature in a group of features that have closely related physical meanings. For
a given background we will have a collection of simple (i.e. low dimensional) models. We
refer to such a collection of models as a Background Model Bank (BMB), and each model
in this bank as a BMB member (SOM-1, • • •, SOM-n in Figure 6.1), In the following
discussions, background model and clutter model will be used interchangeably to refer to a
BMB member.

6.3 The Classification Criterion

Since the target detection process has been formulated as a 2-class classification problem
(natural background vs. man-made target) in our approach, a classification criterion is
needed to label a testing feature cell according to the learned background model. The
criterion used in our experiments is based on the computation of two confidence values:
Confß, the confidence value for a testing feature cell to be background and Confr, the
confidence value for it to be man-made target. These two confidence values are computed by
comparing the Four Neighbor Average Distance (FNAD) of a testing feature cell to Rp which
is the average FNAD of all the positive training examples, and R^ which is the average

104

FNAD of all the negative training examples. To compute the FNAD of a feature cell,
the feature vector is first projected into the learned background model which is represented
by a self-organizing map. The hitting neuron is found next, and the four neighbors of this
hitting neuron are identified. The FNAD can then be calculated according to

FNAD = ^=LH (6.1)
4

where r,- is the Euclidean distance between the testing feature vector and one of the 4-
Neighbor neurons. Figure 6.2 shows the projection of the testing feature vector into the
background model SOM. From Equation (6.1) we have

*" = AN? ' (6-2)

RN = ^n=\^i=1 ' (6-3)

where Np is the number of positive training examples used in constructing the background
model, and NN is the number of near-misses used. The two confidence values are

ConfB = maxfl,-^-) (6.4)

ConfT = maxll,^g-ll (6.5)

Given ConfB and Con fa, the classification of the testing feature cell is obtained as,

_ J Background if Confß > Confy /fi ^N

~ \ Target Otherwise (' '

The classification confidence Cc is assigned the value of Confs or Confr accordingly.

6.4 Reinforcement of Clutter Models Using Contextual
Information

It can be imagined that different features may have different sensitivities to a certain contex-
tual parameter, e.g. in FLIR images, the mean and standard deviation of image gray values
are more sensitive to the air temperature than the Gabor transform amplitude features [74]
which tend to find out periodic patterns within a local image region. To be practically

105

Figure 6.2: Projecting a testing feature vector into a clutter model.

applicable, an ATD/R system must be able to detect targets under different contextual
conditions, i.e. under multi-scenario situations. One way to achieve this goal is to use a
learning technique to associate contextual parameters with the performance of each feature
group in the background model bank. The rationale behind this association is that if a
feature group can effectively detect man-made objects under a given contextual condition,
then it tends to be effective for images taken under similar contextual conditions. Since
a human supervisor cannot provide any assistance to the ATD/R system in finding this
association, except telling the system whether it is doing a "good job" with respect to a
specific testing image, the most suitable learning technique for this task is the reinforcement
learning scheme. Figure 6.3 shows how this reinforcement learning subsystem fits into the
background modeling process.

If a feature group has a good performance under a certain contextual condition, its
detection result deserves a larger weight in the background model bank under similar con-
textual conditions. In other words, the context - performance relationship can be replaced
by a context - weight relationship, which is more compliant for being integrated into an
automatic learning system. To facilitate the discussion, we first define the following terms,
which will be used to formulate the following stochastic reinforcement learning algorithm.
The superscript i(i = 1,2, • • •, nc) refers to the i-th contextual parameter available to our
BMATDR system. The subscript j(j = 1, 2, • • •, np) refers to the j-th feature group in the
background model bank.

• Contextual Parameter (c1) is a scalar that quantifies a specific aspect of a contextual
condition, it can be defined over continuous or discrete values.

• Contextual vector (C) is a vector with each element being c1, a contextual parameter.

• Weight Vector (W) is a real value vector with each element being Wj, the weight of

106

i' 'Flaw of top 6xy t HSfi
!*lfempr«lurt:2.3
i* Rang« «(Reget i 301
j* Depression Angle i *J9

;j^«*ifej^tto

Fls)nfof»m*nt iteming Algorithm

Figure 6.3: Context reinforced clutter modeling process.

the j-th feature group.

Our learning problem can then be defined as: Given a set of training images that cover the
entire range of available contextual parameters, with the background model bank having
been built as a collection of SOM's, associate with each BMB member SOMj a stochastic
transform function Tj, such that Wj = Tj(C). Tj is stochastic because the Context(C)
- Weight(W) relationship cannot be described by a deterministic function, and there are
always exceptional cases due to the high complexity of the real world.

6.4.1 Stochastic Reinforcement Learning Algorithm

The reinforcement learning algorithm we selected for learning the context - performance
relationship of each BMB member is shown in Figure 6.4. It is based on the stochastic
real valued reinforcement learning algorithm, which is developed by Gullapalli for training
a single actor using reinforcement as feedback [36, 37]. This algorithm allows the system
to learn outputs that take on real values. Since the performance of a feature group is best
described as a real number, normally between 0 and 1, with 1(0) representing the best
(worst) performance, this algorithm meets our requirement very well. However, since we
want to use this algorithm to cooperate the actions of np BMB members to achieve a better
performance in target detection, we need to make changes to the algorithm, so that it can
handle multiple actors.

107

In the stochastic reinforcement learning algorithm, Tj is implemented as a random num-
ber generator according to the normal distribution. The mean fij, and standard deviation
Gj are determined by two internal vectors, $j and tyj according to the following formula:

H,n = *},« • Cn (6.7)

where n denotes the n-th iteration of the learning process.

o» = 1 - rj,„ (6.8)

where fjyTl is the estimated reinforcement feedback for the j-th feature group after n itera-
tions of learning. It can be estimated using the following formula:

fiin = l-/(*;..Cn) (6.9)

where function /(•) often takes the form of

which maps the real line onto the interval (0,1). Once the two parameters (/J,J,<TJ) are
available, the weight for the j-th feature group can be computed by passing \ij and Oj to a
random number generator:

WJ~N(HJ,<TJ) (6.11)

So, in the learning system, each context-to-weight transform function Tj is actually "remem-
bered" as two internal vectors, <&j and ^j. Starting with randomly selected initial values,
these two internal vectors learn to represent the Context(C) - Weight(W) relationship by
updating themselves according to the following formula.

*i,n+l = *j,n + «'»fan ~ ^,n) (wj,n - Pj,n)Cn (6.12)

^,„+1 = *i>n + Pn{rjtn - rj,n)Cn (6.13)

where
ri,n = 9\"j,n)

is the reinforcement provided by a critic function g(-) for the the j-th feature group in the
n-th detection trial. Vector P is the vector for the detection result. It can be used by the
critic to judge the performance of the system after the detection trial. Figure 6.4 shows the
data flow path of the modified stochastic reinforcement learning algorithm. Gullapalli has
provided a convergence proof of the single actor reinforcement learning algorithm [37]. The
convergence of the multiple actor case still lacks a proof, it is one of our future research
topic.

108

W0RLD(c,,O >-!..«,

Context Vector: C.«/!'
Performance Vector: P,J,=ll„-Lt»

Detection Algorithm O

Bxifj.-lf,,

; = l,..,n.

—cTite—

Jt-I

;'=i ",

?,W0*"C.) f^=-^p °,*^-h.

«■„.-wirV/..)

Norm* Izatton

Figure 6.4: The stochastic reinforcement learning algorithm.

6.4.2 Implementation Concerns

To utilize this complex learning scheme to solve the previously defined Context(C) - Weight(W)
problem, we have to make several implementation decisions:

1. Selection of contextual parameters:
For infrared images, There are many contextual parameters available. Sherman et
al. categorized 41 such parameters into five classes — background parameters, target
parameters, platform dynamics, atmospherics and sensor parameters [86]. Obviously,
it is difficult to deal with 41 contextual parameters at the same time without organiz-
ing context in some hierarchical manner. One simple practical approach is to select a
subset of important contextual parameters from the available context. In our imple-
mentation, we selected 4 parameters to form the contextual vector. These parameters
are:

• t : Time of the day.

• d : Depression angle.

• s : Range to the target.

109

• p : Air temperature.

In order to make the inner product in equations (6.7) and (6.8) meaningful, we used
relative values of the contextual parameters in constructing the contextual vector. The
relative value of d, for example, is 3 ^d , , where dmax and dTO,-n are the maximum
and minimum depression angle encountered in the training images.

2. Performance vector P:
Since all our features [74] are region based features, given a testing image, the image is
first divided into feature cells based on the range-to-target information. The detection
result is a label vector 1, with each of its element being the label of a feature cell. The
label of the top-left feature cell is the first element in 1, and the label of rest feature
cells are entered in a row-first manner. The easiest way to describe the performance of
the detection is to compare 1 with the label vector L given by the learning supervisor.
Thus, the performance vector P can simply be P = 1 — L.

3. Selection of the critic function:
Since we are dealing with a two class classification problem, both 1 and L can be a bit
vector. A simple metric for the detection performance is obtained by examining the
number of bits being set to 1 in P. So, the reinforcement feedback can be computed
as follows:

Nb

where Nb is the total number of feature cells within the testing image. ph- denotes
the k-th element of vector PJ?n which, in turn, describes the performance of the j-th
feature group in the n-th detection trial.

6.5 Experimental Results

In this experiment, we compare the detection performances of two background model banks
learned by using our near-miss injection SOM algorithm [75] and 40 FLIR images (20 images
for training and the other 20 for testing). Two sample images are.shown in Figure 6.5. In
the first background model bank, no contextual information is involved. Thus all the BMB
members (each represented by a 5 x 5 self-organizing map) in the background model bank
are treated as equally important. Since we have five BMB members in our background
model bank, the weight of each BMB member is 0.2. The second background model bank
contains the same BMB members that constitute the first background model bank. In
addition, contextual information is used to reinforce this background model bank. By

110

(a) 09p3sa6rJ0h (b) 09p3sa6r_2/j

Figure 6.5: Two examples of the 40 FLIR images used in our experiments.

applying the stochastic reinforcement learning algorithm given in Section 6.4.1 for 200
iterations, a relationship is set up between the importance of each BMB member and the
underlying contextual condition. This relationship is represented by the two internal vectors
$ and \P associated with each BMB member.

After the construction of these two background model banks, another 20 second genera-
tion FLIR images are used as testing images. For each testing image, an accompanied image
is built by removing rows and columns, equal to one-half the size of the selected feature
cell, from all the four sides. By using the first background model bank and the classifica-
tion criterion given in Section 6.3, out of the 217 feature cells in the 20 testing images, we
achieved a 100% detection rate and a 12% false alarm. These 20 testing images and their
accompanied images are then classified by using the second background model bank. The
detection rate obtained is 100% and false alarm decreased by 2%. The detection confidence
values of the correctly classified feature cells in both experiments are shown in Figure 6.6(a).
Figure 6.6(b) shows the confidence values of the misclassified feature cells in both experi-
ments. From these two figures we can see that by reinforcing the background model bank
using contextual information, the confidence values of the correctly classified feature cells
increase, and the confidence values of the misclassified feature cells decrease. The final
effect is an improved detection performance. In Figure 6.6(c), the result is presented in
a different way. The confidence values of the misclassified feature cells are represented by
negative values, as before, the confidence values of the correctly classified feature cells are
still represented as positive values. It can be seen that the context reinforced background
model makes the curve of confidence values shifting upward, which produces a better de-
tection result. We expect that further reduction in false alarms are possible by increasing
the size of the training image set, which would expose the background model bank to more
contextual conditions. In our experiments, because of the availability of experimental im-

111

<D °* I» 3 J;

> '
o '
Cos- I...
c
O 01.

Feature Cell

(b)

Figure 6.6: The improved detection performance after context reinforcement of the background
model. Dashed lines show results of the background model bank not reinforced by the contextual
information. Solid lines represent results of the context reinforced background model bank, (a)
correctly classified feature cells (b) misclassified feature cells (c) all the feature cells in the testing
images.

ages, the contextual conditions of some testing images are apparently different from those
of the training images. This has limited the reduction in false alarms in our experiment.

6.6 Conclusions

By introducing learning capabilities into an ATD/R system, we can build a model for the
complex natural background from real images and improve it as the system is trained with
more examples. Contextual parameters which hold non-imagery information of the training
examples are used to enhance the background models. Future work will concentrate on the
convergence of the stochastic reinforcement learning algorithm for multi-actor cases and
applying our approach to other sensory data.

112

Chapter 7

Performance Improvement by
Input Adaptation

This paper focuses on developing self-adapting automatic object detection systems to achieve
robust performance. Two general methodologies for performance improvement are first in-
troduced. They are based on optimization of parameters of an algorithm and adaptation
of the input to an algorithm. Different modified Hebbian learning rules are used to build
adaptive feature extractors which transform the input data into a desired form for a given
object detection algorithm. To show its feasibility, input adaptors for object detection are
designed and tested using multisensor data including SAR, FLIR, and color images. Test
results are presented and discussed in the paper.

7.1 Introduction

Automatic object detection is of great importance for many vision based real-world appli-
cations. An automatic object detection system should be able to locate objects of interest
in the input images produced by different sensors such as CCD cameras, infrared sensors,
radars and multispectral scanners. Although many automatic object detection systems
have been developed, their performance is still limited [96]. This paper is motivated by
the increased demand for new theories and methodologies to improve system performance
[38, 96, 98] and to minimize the effort needed for the development of robust object detec-
tion systems. The original contribution of this paper is the idea that the performance of
a given algorithm can be improved by adding an adaptor between the input data and the
algorithm. This is an input adaptive process and is based on the observation that most

Input Algorithm

F

Output

jj Parameters |

Figure 7.1: Parameter optimizing methodology for performance improvement.

algorithms would perform well if the desired input data can be provided to them. Different
kinds of Hebbian-like learning rules are introduced and applied to developing such adap-
tors. The feasibility of this methodology for performance improvement is demonstrated by
experimental results using multisensor data.

7.2 Parameter Optimization Versus Input Adaptation for
Performance Improvements

The first methodology is based on the consideration that some algorithms and systems have
certain controllability and their performance can be improved by tuning their parameters
[12]. To find the best parameter set for the given input data a learning and optimizing pro-
cess is usually required. This methodology is, therefore, parameter optimizing oriented. As
shown in Figure 7.1, parameter optimizing based methodology employs different parameter
set for different input data in order to obtain the optimal output. However, this methodol-
ogy suffers from some inherent shortcomings: (a) It is driven by both the input data and
the output data. It has to have an off-line learning phase. This leads to the difficulty of
sample collection because some input situations are not predictable. Besides, the off-line
learning process is usually time consuming, (b) In order to use the trained algorithm, in-
formation about the possible category of the input data is needed before the appropriate
parameter set can be switched on. This means that the trained algorithm works only with
an additional input identifier which triggers the corresponding parameter set. Certainly the
design of such an identifier is as hard as that of the algorithm itself, (c) The performance
of an algorithm cannot be always improved by optimizing the parameter set because the
gradients of objective functions of some algorithms with respect to their parameters are too
small. So not all algorithms can be improved by using this methodology.

The second methodology for performance improvement is based on the observation that
most algorithms would perform well if their input data are "friendly", as discussed above.

114

Thus, the performance of almost all commonly used algorithms can be improved by adding
an adaptor between the input data and the algorithm (see Figure 7.2). An ideal adaptor
should automatically judge the input data, provide the desired input data to an algorithm,
and learn something from this process in order to improve itself in the future.

In comparison with the parameter optimizing based methodology, the input adapting
methodology presented in this papaer has some positive features such as: (a) It is suitable
for almost all algorithms because the desired input data (not always the perfect input data)
always exists for a given algorithm, (b) It is driven only by the input data. So it can work
both on-line and off-line. This is very important for real-world and real-time applications,
(c) This methodology makes it possible to combine some simple, ready-made available
algorithms to build vision systems that exhibit high level performance. Without adding
adaptors, these simple algorithms may be unreliable for practical applications, although
they have simple structures and are not time consuming.

7.3 Representations Versus Salient Features

Most commonly used algorithms can show good performance only if their input represen-
tations have some "friendly" characteristics. To keep their performance high even if the
input representations are not so "friendly", adaptors are needed which transform the input
representations to some salient features. Thus, an adaptor can also be regarded as a salient
feature extractor. The key issue in input adapting methodology for performance improve-
ment is how to design an adaptor or feature extractor for each algorithm at each stage of
the representation transformation.

7.3.1 Optimal Feature Extraction

From a mathematical viewpoint, feature extraction is a transformation from a m-dimensional
input representation x to a «-dimensional output representation v, so that n < m and for
each v € v the expected value of p(v) is minimized:

/+oo
p(v)p(v)dv-t min, (7.1)

-oo

where />(•) is a "loss" function, E(-) is the risk (the expected value of the loss), and p(-) is
the probability density function of v. This means that the transformed representation v
should be less redundant (because of n < m) and salient (because of E(p(v)) -)■ min, D£V).

Thus E(-) is a measure of saliency which depends on the loss function p(-).

115

j Param

Figure 7.2: Input adapting methodology for performance improvement.

A simple example of the representation transformation is the linear mapping W which
transforms the m-dimensional input representation x to n-dimensional output representa-
tion v by using

v = Wx=(w1,w2l-,wffl)
Tx. (7.2)

In this case, W is a feature extractor if v has some nice properties. The feature extractor
W can be realized by using a single-layer linear feed-forward network.

As can be seen, the basic unit of this network is a m to 1 mapping

v = wTx = xTw, t)£v. (7.3)

The basic unit can also be nonlinear. In this case the m to 1 mapping is formulated by

v = r(wTx) = r(xTw), v € v, (7.4)

where r(-) is nonlinear function. The mapping (7.3) or (7.4) is salient or interesting if
E(p(v)) is minimized. The key issue of constructing a feature extractor is thus the design
of the loss function.

Before the loss function can be designed, the question of which v is "salient" or "inter-
esting" should be first defined. Certainly, no universal agreement on this question can be
expected. Two general definitions about the saliency of v that we have are:

• Expressiveness: v is salient if it is expressive.

• Discrimination: v is salient if it is discriminating.

In the following the problem of how to extract these features is addressed.

7.3.2 Expressive Feature

Let us consider a set of m-dimensional input representations X = {xi,X2, • • -,xt} which
builds a "cloud" of points in the m-dimensional space. It is clear that each point x 6 X

116

Figure 7.3: A point cloud in a 2-dimensional space.

can be projected onto a direction determined by the vector w by using Equation (7.3) or
(7.4) and the result of this projection is v. Figure 7.3 just shows a case of m = 2. Now the
problem is which projection direction is interesting.

As shown in Figure 7.3 the first interesting direction is VE because the projections of all
points onto this direction have the maximal variance and VE is, therefore, expressive. It can
be proved that Vß is determined by that w which is the largest eigenvector associated with
the largest eigenvalue of the correlation matrix

Let us first define a loss function

The risk E(po) can be calculated by

Q = £(xxT).

PG=^v

Minimizing E(po) requires

E(po) = \E{V*) = ±wTQw.

9E „
Aw = -— = Qw = 0.

This leads to famous plain Hebbian learning rule

Awi = nvxi,

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

where w,- and a;,- are the ith component of w and x respectively, and n controls the learning
rate as usual. It can be seen that Hebbian learning is controlled by both the input (through
Xi) and the output (through v).

117

Equation (7.8) tells that w is an eigenvector of Q with eigenvalue 0. But this could never
be stable, because Q necessarily has some positive eigenvalues; any fluctuation having a
component along an eigenvector with positive eigenvalue would grow exponentially. It
might be suspected that the direction with the largest eigenvalue of Q would eventually
become dominant, so that w would gradually approach the eigenvector corresponding to
the largest eigenvalue with a increasingly huge norm. Certainly, w does not settle down in
any case. There are only unstable fixed points for plain Hebbian learning procedure (7.9).

Let us modify the loss function (7.6) to

1
PE = v2 - E{v2)wTvA . (7.10)

The risk E(ps) can be calculated by

E(PE) = \(E(v2) - E(U
2)wTw)

= -(wTQw - £(t;2)wTw). (7.11)

Since the risk is continuously differentiable, the optimization of (7.11) can be achieved, via
a gradient descent method, with respect to w:

Aw = ?ß = Qw - E(v2)w = 0. (7.12)
aw

Clearly, an equilibrium can be reached if w is the eigenvector associated with one eigenvalue,
say the largest one, of Q and E(v2) is just the eigenvalue.

Equation (7.12) leads to the learning rule suggested by Oja [60]. According to this rule,
each input x £ X is applied to adapt the weight w by using

Awi = rjv(xi-vwi), (7-13)

where Wi and a;,- are the ith component of w and x respectively, and r\ controls the learning
rate. The learning rule (7.13) is a generalized version of Hebbian learning rule (7.9) which
has been so widely applied to develop unsupervised learning networks.

Comparing the loss function (7.10) with (7.6) shows that these Hebbian-like learning
rules are based on second order statistics as they usually use second order polynomials for
measuring the interest and they lead to extraction of principal components (PC) of the
input data [48, 60, 78]. It can be proved [48] that minimizing the risk (7.11) is equivalent to
maximizing the information content of the output representation in situations where that
has a Gaussian distribution.

118

The direction VE found in this way allows faithful representation of the input data and
the projection of the point cloud onto this direction can also show interesting structure if
the cloud contains a few clusters and the separation between clusters is larger than the
internal scatter of the clusters. However, the direction VE can lead us astray if the cloud
shows too many isotropically distributed clusters or if there are meaningless variables (z,'s)
with a high noise level. In these two cases, the output representation VE doesn't allow
discrimination between clusters (see the example in Figure 7.3). This means that second
order polynomials are not sufficient to characterize the important features of an input
distribution and all second order statistics based feature extractors cannot provide features
which are discriminating enough for recognizing the structure in the input representation.

7.3.3 Discriminating Feature

As shown in Figure 7.3, the second interesting direction is vr> because the projections of
all points onto this direction can enable us to better distinguish the interesting structure
(clusters) presented in the cloud and vp is, therefore, discriminating.

In order to find this direction, a measure sensitive to distributions which are far from
Gaussian is needed. As already discussed, second order polynomials such as shown in (7.10)
cannot be used for measuring deviation from normality. To emphasize bi- or multi-modality
of the projected distribution, higher order polynomials are required and care should be taken
to avoid their over-sensitivity to small number of outliers.

Let us define a loss function

PD = v2 E(v2) \v\
4 3

= v2r{v), (7.14)

where r(v) can be regarded as a weighting function. The loss function pp is small if v is
close to zero or to 3E(v2)/4. Moreover, it remains negative for v > ZE{v2)/A. Thus, pp
as an index can exhibit the fact that bimodal distribution is already interesting, and any
additional mode should make the distribution even more interesting.

Actually, any radial basis function (see [98]) can be used as the weighting function
in Equation (7.14) to design interesting loss functions. The advantage of r(u) used in
Equation (7.14) is its connection to the Bienenstock, Cooper, and Munro (BCM) theory of
visual cortical plasticity [16, 43].

The expected value of pp is given by:

E(PD) = \E2
{V

2
) - l-E{v*)

119

= ^E(v2)wTQw-^E(v3).

To achieve E(pu) —> min, the equation

-2E-JL
dw dw

should be satisfied. This leads to a learning rule

\E\V2) - l-E{v*) = 0

Awi = rj E{v2)v

(7.15)

(7.16)

(7.17)

where X{ is the i component of x and rj controls the learning rate.

The difference between the learning rule (7.17) and Hebbian learning rule (7.9) is the fact
that the influence of the output on the learning process (the feedback) has been changed
from v in (7.9) to v2 - E(v2)v in (7.17). This enables the learning rule (7.17) to discover
bimodal distributions as Aw,- in (7.17) (unlike in (7.9)) has opposite value depending on if
v is larger or smaller than E(v2).

Unfortunately, the learning rule (7.17) has the same divergence problem like Hebbian
learning rule (7.9) and in any case w does not settle down. One way to prevent the
divergence of w is to constrain the growth of w by modifying the loss function (7.14):

Pz = tr
E(v2)

- E(v2)wrw. (7.18)

This leads to a new learning rule obtained by adding a weight decay to the learning
rule (7.17):

Awi = r} v2 - E(v2)v] (xi - vwi). (7.19)

So far four different learning rules hav«%|en introduced. They are based on four different
loss functions (see Table 7.1) and can be applied to extracting expressive and discriminating
features. In Table 7.1, EF denotes "expressive features" and DF denotes "discriminating
features".

7.4 Adaptive Object Detection

120

Table 7.1: Different Learning Rules For Feature Extraction

Type The Loss Function The Learning Rule Suitability

I PG = \V2 Awi = rjvxi EF

II PE = \ v2 - E(v2)wTw AlVi = Tjv(Xi — VWi) EF

III PD = V2 \E(v*) Ml
4 3 Awi = T) [v2 - E(v2)v] Xi DF

IV PZ = V2 \E{v*) Ml
4 3 - E(v2)wTw Awi = T) [v2 - E(v2)v] (xi - vw{) DF

Figure 7.4: Input adapting for the image thresholding algorithm.

7.4.1 Adaptor Design

Figure 7.4 shows an adaptor which is designed for the image thresholding algorithm. The
key idea for designing this adaptor is to decompose the input image into some local measure
images and then to adaptively extract salient features from these local measure images based
on the modified Hebbian learning rules presented above. In order to derive local measures
for each pixel in the input image, the quadrature Gabor filter kernels

G+(u,<f>) = exp

G-(u,<f>) = exp

X2u2(x2 + y2)

cos[u;(a; cos <f> + y sin <£)]

\W(x2 + y2

(7.20)

47T

121

■sm[u>(x cos <f> + y sin <f>)] (7.21)

are applied to decompose the input image I(x, y) by using

I+{x, y,u, <f>) = G+(w, <f>) * I(x, y),

' I-(x,y,u,<l>) = G-{u>,<l>)*I{x,y), (7.22)

where u and <f> are the modulation (center) frequency and orientation, respectively, of
the Gabor filter kernel; A is the ratio of the channel bandwidth and the modulation fre-
quency; and I+{x, y, u>, <f>) and /_ (x, y, u, <f>) are Gabor space image descriptions. From these
descriptions it is easy to derive some local measures. In Figure 7.4 the power

p(x,y,u,4) = ll(x,y,u,<l>) + ll(x,y,u>,<f>) (7.23)

is used as a local measure of the input image I(x, y). So far m power images can be obtained
and m depends on the quantization of w and <j>. This means a local measure vector with m
elements is associated with each pixel of the input image.

Each element of the local measure vector is a representation to describe the local property
of the input image but it is not just the right feature to discriminate clusters depicted in the
input image. The most discriminating feature should be found in the m-dimensional local
measure space based on the structure presented by all local measure vectors in the input
image. This requires a m to 1 feature extractor A which is trained by using the learning
rule (7.17) or (7.19) as described above.

To reduce high frequency components in the input data two feature extractors B* and
C* are introduced into the adaptor shown in Figure 7.4. They are actually two convolution
kernels with n X n elements which should be trained by using the learning rule (7.9) or
(7.13) as described above.

After the convolution using B* and C* two feature images can be produced which
should be integrated by the feature extractor D in order to supply desired images for the
thresholding algorithm. The feature extractor D performs a 2 to 1 transformation and is
trained by using the learning rule (7.17) or (7.19).

Now the adaptor is able to produce desired input images for the thresholding algorithm
(see Figure 7.4). It is obvious that the output images in Figure 7.4 are better than the
input images in Figure 7.4 to be used as the input images for the thresholding algorithm
because the object in the center is better discriminated from the background. Thus, the
performance of the thresholding algorithm can be improved by using the adaptor.

7.4.2 Experimental Result for Adaptive Target Detection

122

Figure 7.5: Test Result Using SAR Images.

Figure 7.5 shows the test result of target detection system using SAR image data. The
column a shows the input images. The column b shows the test results using the threshold-
ing algorithm. The column c shows the test results using the thresholding algorithm plus
the input adaptor. It can be seen that even a simple algorithm can perform well if its input
data are properly prepared by an input adaptor. This means that adding an input adaptor
can enlarge the dynamic range of an algorithm and improve its performance.

Figure 7.6 shows another example of target detection in a FLIR (Forward Looking In-
frared) image by using the same system. Again, the image a is the input image. The image
b and c show the test results using the thresholding algorithm without and with the input
adaptor. As can be seen, the performance of the system is satisfied even when the input
image has different properties as used before.

Figure 7.6: Test Result Using a FLIR Image.

123

Figure 7.7: An outdoor scene with a car and a yellow traffic sign near the car.

7.4.3 Detection of Colored Objects

The first step to design a system for object detection from a color image is the specification
of an object. An object, for instance, can be defined as a connected region in a color image
which has a special shape such as circle or rectangle. It can also be defined as a connected
region which has a given color topology such as a red region surrounded by a yellow region.
In this paper, an object in a color image is defined as a connected region which is small and
well colored. Figure 7.7 shows a sample image. The scene is photographed approximately
every 15 minutes over a four hour period by using a fixed JVC GXF700U color video camera.
A total of 20 image frames are obtained in this way and only four of them are selected for the
experiment. The time and the weather condition of these four color images are: Frame 1,
1:20pm, Sunny; Frame 5, 2:15pm, Sunny; Frame 9, 3:15pm, Sunny; and Frame 13, 4:45pm,
Sunny.

The colors of the car and traffic sign in Frame 13 are subdued since they are located
under the shadow of the trees when Frame 13 was taken. However, these objects are well
colored in Frame 1, because there was no shadow at 1:20 pm when Frame 1 was taken.
This can be seen if all the pixels of both Frames are mapped into the RGB color space (see
Figure 7.8). The R, G, and B values of all pixels in Figure 7.8 are normalized in the range
[—0.5,0.5]. As shown in Figure 7.8, all pixels in Frame 13 are located along the line segment
between the point [-0.5, -0.5, -0.5] and the point [0.5,0.5,0.5]. This line can be thought
of as a colorless line. This means that the saturation or the color of all pixels in Frame 13
is relatively low because they are located close to the colorless line.

On the contrary, some pixels in Frame 1 are located away from the colorless line and the

124

Frame 1 Frame 13

Figure 7.8: Image pixels are mapped into the RGB color space.

saturation of these pixels is relatively good. These pixels are well separated from the pixel
group around the colorless line and can be regarded as outliers of this pixel group. Thus,
they can be defined as well colored pixels which build regions of interest in Frame 1. In the
following we describe how to develop an adaptive system to find these outlier pixels.

It is first interesting to know what happens if all pixels in a color image are applied to
train the 3 to 1 feedforward network by using Hebbian-like learning rules shown in Table 7.1.
The weights of this 3 to 1 feedforward network obtained after training by using the learning
rule II and III in Table 7.1 are shown in Table 7.2 and Table 7.3, respectively. The trained
network can then be used to map a color image into a gray scale image. Figure 7.9 shows the
gray scale images mapped for Frame 1 and Frame 13. The first row in Figure 7.9 shows the
images mapped by using the weights listed in Table 7.2, while the second row in Figure 7.9
shows the images mapped by using the weights listed in Table 7.3.

If the two mapped images shown in the second row of Figure 7.9 are compared, we can
see that the car and the traffic sign are much better separable from the background in
Frame 1 than in Frame 13. This means that, although Frame 13 has three color channels
R, G and B, the color information encoded in this frame is so weak that this frame can be
regarded as almost colorless. In fact, most of the information in Frame 13 is encoded in
a gray scale image which is the right image in the first row of Figure 7.9, because it was
obtained by using the most expressive mapping and this mapping was determined by using
all the pixels in Frame 13 as the training data and the modified Hebbian learning rule II in

125

Table 7.2: Weights after training by using the learning rule II.

Image Used for

Training W\ w2 w3

1 0.576884 0.592581 0.562207

5 0.585867 0.590048 0.555533

9 0.583240 0.567947 0.580755

13 0.585854 0.577843 0.568225

Table 7.3: Weights after training by using the learning rule III.

Image Used for

Training Wi w2 w3

1 0.691818 -0.716642 0.088382

5 0.685157 -0.724709 0.073194

9 0.727544 -0.685147 -0.035408

13 0.657560 -0.749287 0.078640

Table 7.1.

The well colored objects such as the car and the traffic sign in this image (the left image
of second row shown in Figure 7.9) are separable from the background. To understand this,
all selected frames are transformed by using such mapping (see the first row of Figure 7.10)
and compared with their saturation (see the second row of Figure 7.10). It is clear that the
adaptive mapping obtained by using the modified Hebbian learning rule III or IV in Table 7.1
discriminates well-colored objects from the background. The left image of Figure 7.11 shows
the object detection result from Frame 1 after thresholding the results shown in the top
left image of Figure 7.10. This image can be further used for post-processing. The right
image of Figure 7.11 shows the post-processing result using morphological filtering followed

126

Franwl Pram* 13

Figure 7.9: Grey scale images obtained by adaptive mapping.

by color based filtering.

7.5 Conclusions

In this paper, the attention was paid on how to to improve the performance of object
detection systems by adding the adaptability to ready-made available algorithms without
changing their internal structure. The input adapting based approach presented here pro-
vides a promising solution to improve the performance of pattern recognition and computer
vision algorithms and systems to meet requirements of real-world applications.

127

ü^füi

Figure 7.10: The discriminating mapping used to color images and compared with the saturation
mapping.

Before Post-Processing After Post-Processing

Figure 7.11: The object detection from Frame 1, before and after post-processing.

128

Chapter 8

Case-Based Learning of
Recognition Strategies

8.1 Introduction

Photointerpretation (PI) has been an important application domain of image understand-
ing (IU) techniques for about two decades. An important goal of PI or image exploitation
(extraction of intelligence from image data, particularly aerial imagery) is to aid reconnais-
sance tasks, such as airfield, port, and troop movement monitoring. The problem of PI is
one of identifying instances of "known" object models in images acquired from a platform,
such as by a satellite or a reconnaissance aircraft. Like PI, automatic target recognition
(ATR) is also concerned with finding instances of known targets in the input sensor data.
Model-based object recognition is a challenging task under real-world conditions such as
occlusion, shadow, cloud cover, haze, seasonal variations, clutter, and various other forms of
image degradation. Additionally, ATR scenarios are characterized by multi-modal imagery,
low resolution, and camouflage. All of these problems put heavy requirements on any IU
system to be robust.

Automatic acquisition of recognition strategies in dynamic situations has been a bot-
tleneck in the development of automated IU systems applied to real-world problems, such
as PI and ATR. The problem occurs while matching a stored object model to an input
instance of that model and is attributed to the initially unknown pose of object and the
varying environmental conditions. During the process of image/scene understanding, a hu-
man relies heavily on the memory of past cases and experience. We use the Case-Based
Reasoning (CBR) paradigm in which "past" experiences are stored in memory as cases and

129

are used to solve a new problem case. Similar cases can be combined to create problem
solving shortcuts or to anticipate problems in new situations. The set of cases is prioritized
and a strategy for the current problem is generated and executed. Various combinations of
cases are created until a successful solution is reached.

8.2 Learning Recognition Strategies

Figure 8.1 describes our approach to learning recognition strategies for real-world object
recognition tasks. The main learning paradigm employed in our recognition scheme is Case-
Based Reasoning. The detailed CBR-based recognition framework shown in Figure 8.1 con-
sists of four subtasks: (a) the generation of goal-directed recognition strategies using CBR,
(b) the construction and maintenance of the Generalized Case Library (GCL) that collects
past situations and corresponding actions, (c) the development of efficient algorithms for
matching new situations to previous cases, and (d) the generalization of new cases using a
variation of Explanation-Based Learning (EBL). Additionally, our approach also addresses
the problems of indexing into the object model data base and the verification of object
hypotheses. This latter task consists of two main parts: (a) the creation and refinement
of the decision structures for indexing, using a variant of the Conceptual Clustering (CC)
learning technique, and (b) the implementation of the indexing and matching algorithms.
In this report, we focus on the CBR-based framework.

8.2.1 Case-Based Reasoning (CBR)

Case-based approaches are characterized by how the learner represents what it has learned
so far, as well as the analogical methods which are used to transfer the learned experience.
Human expertise in problem solving is largely dependent on past experiences. This idea has
influenced the evolution of Case-Based Reasoning [5, 45, 73]. A related approach is that of
reasoning by analogy [4, 28]. In CBR, "past" experiences are stored in memory as cases and
are used to solve a new problem case. Given a problem to be solved, the case-based method
retrieves from the memory the solution to a similar problem encountered in the past, adapts
the previous solution to the current problem, and stores the new problem-solution packet
as another case in the memory.

There are several advantages of CBR as a learning paradigm. First, CBR has the capa-
bility of anticipating and therefore avoiding past mistakes as well as focusing on the most
important aspects of a problem first. All of these lead to an increase in efficiency over time.
Second, the learning process is fairly uncomplicated, since CBR does not require causal
models like inductive learning or extensive domain knowledge like analytic learning. Third,

130

Image

Non-Image _
Information

Conceptual
Clustering

(CC)

Generation and
Execution of

Goal-Directed
Strategy for

Object Recognition

Case-Based Reasoning
(CBR)

J.
Generalized Case Library
for Object Recognition

(GCL)

Segmentation,
Feature Extraction,

Grouping

Recognition
Strategies

Adaption/
Acquisition

of the Current
Situation

Explanation-Based
Learning (EBL)

Acquisition and
Refinement of
Object Models

Symbolic Features

Object
Recognition

(Indexing
and Matching)

Recognition
Performance
Evaluation

Recognition
"*" Results

Recognition
■ Quality
Measures

Figure 8.1: A CBR framework for learning recognition strategies. EBL generalizes cases and along
with CC it facilitates automatic knowledge acquisition of object models.

the individual or generalized cases can also serve as explanations. Fourth, the process is
scalable. Fifth, the knowledge acquisition bottleneck is relatively simple to solve in CBR
than in conventional learning systems. This is because individual cases interact a little
among themselves unlike the rules. The major concerns with CBR are the selection of the
indexing scheme to organize cases in the memory, the method for choosing the most relevant
cases at reasoning time, and the adaptation heuristics to modify previous cases to fit the

current problem.

There are two major types of case-based approaches: interpretive/classification (or
precedent-based) CBR, and problem solving CBR. In the precedent-based CBR, the task is

131

to decide whether or not a new case should be treated like one of the stored cases based
on similarities and differences between the two. This is done by generating a pro's and
con's analysis from a comparison of the two cases. In problem solving CBR, a solution for
the new problem is formulated by suitably modifying past solutions. In either approach,
a proposed solution must be verified for appropriateness. This is particularly important if
the derived solution is based on "unexplained" experiences. This verification process is akin
to an evaluation procedure associated with any learning process. An interpretive CBR is
used in such evaluation process to provide a check on the use of knowledge derived from
experience.

8.2.2 CBR in IU

Current model-based IU approaches to object recognition generally utilize only the geo-
metric descriptions of object models, i.e., they emphasize the recognition problem as a
characteristic of individual object models only. However, there are various factors, such
as contextual information, sensor type, target type, scene models, and related non-image
information that may influence the outcome of recognition in real-world applications such
as ATR, PI, navigation. Humans also rely on such ancillary information for object recogni-
tion and scene understanding. For example, it is well known in the intelligence community
that oxen yoked to water pumps in Southeast Asia resemble anti-aircraft artillery in aerial
images [2]. Thus, without the knowledge of the area being examined, an image analyst
or an automated PI system may be misled easily. Thus, prior experience in addition to
object/sensor models is important for devising efficient and robust recognition strategies to
deal with noisy data or occluded targets against complex backgrounds.

Prototypical situations (cases) observed in the past are useful for the recognition of
objects as well as for the assessment of entire scenes. An example of a case in the PI
context is given in Figure 8.2. Each path from the root node to a leaf node in the tree
represents a single case. The path incorporates the information normally used at each level
in an object recognition task, e.g., aircraft recognition. It includes contextual information,
e.g., airfield, scene type, e.g., tarmac parking areas, the best object recognition strategy, e.g.,
selection of segmentation, feature extraction, recognition algorithms and their parameters,
and corresponding image analysis goals, e.g., finding instances of transport aircraft such as
Hercules. A case of ATR would additionally include sensor type, terrain, and radiometric
information.

Case-based methods are best suited to problems for which many training cases are avail-
able, perhaps with many exceptional cases, and it is difficult to specify appropriate behavior
using abstract rules. Most IU applications, such as ATR and PI, are characterized by
large-volume image exploitation corresponding to a variety of scenarios, many of which re-

132

Case

S^nent^Param, ^

Parang. ^JQ

Grass Areas

Paramj[

_ ~Cfaram2
FeatExci~fX)Param3

C LL —*
FeatExctß Recogr

C-130

Hercules

Figure 8.2: Representation of a case in the photointerpretation context.

quire unique analysis. Besides, IU for unstructured environments is difficult to formalize in
terms of rules that are general enough to be applicable to diverse situations. For example,
recognition of a Hercules aircraft in a parked area of the tarmac under sunny condition has
been successful in the past by following the path from the root node to the leaf marked
"hercules" in the case representation of Figure 8.2. However, the same path may not lead
to a successful recognition of an F-18 aircraft. Thus, the case of recognizing a Hercules is
not the same as that of an F-18.

8.2.3 Learning Method

The learning approach is concerned with (a) building new cases, (b) generalizing and re-
fining existing cases, for a particular application. As indicated in Figure 8.1, the relevant
knowledge is accumulated in the generalized case library. For updating and indexing into
the GCL we use a combination of two different learning strategies: CBR is used primarily
for retrieving the relevant earlier experiences and updating (restructuring) the knowledge
base; CC is used for maintaining decision structures (classification trees) that allow efficient
object recognition at run time.

The GCL is the collection of knowledge that allows the system to perform object recog-
nition and scene assessment. It is a dynamic body of information that represents the
experience base of the object recognition system. For efficient indexing, the GCL is repre-
sented as a structured hierarchy of individual cases. Each case, in turn, is represented using
scripts and memory organization packets (MOPs) which are meta-scripts [80, 81]. These
data structures are appropriate for episodic memory or time sequences of episodes which
are equivalent to the sequences of computational steps/recognition strategies in our case.

133

Since scripts contain more specialized information, these are used for lower-levels of a case
structure. The MOPs allow representation of more generic knowledge such as an airfield
which can be instantiated and specified for recognition of multiple aircraft types.

When a new problem situation or IU task is encountered, e.g., recognition of aircraft
on tarmacs, the process of interpreting and assimilating the new task in CBR framework
breaks down into the following steps:

• Assign Indices - Features of the new task are assigned as indices characterizing the
task. For example, "tarmac" and "aircraft" can be used to characterize the task as
"aircraft-on-tarmac" which will be a particular subtask of "aircraft-in-airfield" task.

• Retrieve - The indices are used to retrieve from memory a similar case encountered
in the past based on similarities and differences. The past case contains the prior
solution. For example, a case which has involved aircraft on tarmac instead of grass
areas.

• Modify - The previous solution is adapted to the current task, resulting in a proposed
solution. For example, the previous recognition may have occurred under sunny condi-
tions which required detection of shadows, while the weather condition for the current
task is cloudy. Thus, the previous case is modified by eliminating all computational
steps involving shadows.

• Test - The proposed solution is carried out. It may lead to success or failure. For
example, the parameters of the segmentation algorithm for detecting regions of interest
may have been retained as the same as in the previous case. On the other hand, the
contrast of the current image may be low due to cloudy weather condition, thereby,
requiring somewhat different segmentation parameter set.

• Assign and Store - If the solution succeeds, then indices are assigned to it and the
solution is stored as a working solution. The successful plan is then incorporated into
the case memory. If the solution is not too different from the proposed solution, then
it affects the script of the existing case a little.

Explain, Repair, and Test - If the solution fails, then the failure is explained, the
working solution is repaired, and the test is again carried out. The explanation pro-
cess identifies the source of the problem. For example, new segmentation parameters
are selected when recognizing aircraft under cloudy weather condition. The predic-
tive features of the problem are incorporated into the indexing rules to anticipate
this problem in the future. For example, "aircraft-on-tarmac" index is extended to
"aircraft-on-tarmac-sunny" and "aircraft-on-tarmac-cloudy". The failed plan is re-
paired to fix the problem, and the revised solution is then tested. The rest of the plan

134

is carried out with new segmentation parameters in our example. A new case is then
created in the memory to handle this new situation.

The results of the CBR-generated strategy are passed to the interpretation and evalu-
ation component. Case indexing and matching is performed using the intermediate visual
concepts. The different recognition states are: complete recognition,' incomplete recogni-
tion, object occlusion, object model acquisition, object model refinement, and recognition
failure. Now, three situations may arise. First, if the strategy is very similar to one of
the cases extracted from the GCL, no learning takes place. In this instance, the system
has encountered an "ordinary" image interpretation task in which the current collection of
system knowledge is adequate. Second, if the strategy is an extension of an existing case
(i.e., the existing case represents a subset of elements of the new strategy), a case refinement
operation may be necessary. The new strategy and its associated case are sent to the EBL
module to determine if any new information should be included in the existing case. Third,
if a unique combination of existing cases has been utilized to create a novel strategy for a
given problem, a case acquisition operation is required. The new strategy is passed to the
EBL, which applies its system control knowledge in order to remove irrelevant details and
conceptualize the scope of the strategy. This new strategy is then inserted as a new case
into the GCL. The CBR and the EBL paradigms are combined in a complementary manner.
CBR has the ability to index into a large number of potential solutions and select a set of
cases that match the characteristics of the current object recognition task. However, the
performance of CBR degrades with the size of the case library and also by the amount of
irrelevant detail retained in the stored cases. EBL compensates for this by learning only
the concepts underlying the individual cases before adding the conceptual abstraction of
the cases to the GCL. On the other hand, since CBR combines a set of previous cases to
create a single new case for the current problem, any bias of the EBL component towards a
particular training example will be greatly reduced. In summary, CBR allows the capture
of context and domain-specific information to improve recognition performance over time.

8.2.4 An Example

An example that illustrates the use of CBR for high-level object recognition is given in
Figures 8.3-8.4. A knowledge-based technique initially identifies several regions of interest
(ROIs) in the image that are likely to contain aircraft. One such ROI and its corresponding
segmentation results are shown in Figures 8.3(b) and 8.3(c), respectively. Also shown in
Figure 8.3(c) are the dominant axes of an aircraft structure along the wing and the fuselage.
(The third axis corresponding to the shadow of the wing is found to be part of a shadow
region and is removed subsequently.) The most "salient" features (with regard to edge
strength and global connectivity) and the identified shadow lines are shown in Figures

135

Figure 8.3: High-level object recognition based on CBR. (a) Original image; (b) Initial region of
interest (ROI); (c) Extracted dominant axes.

8.4(a) and 8.4(b), respectively. Notice that most of the front edges on both wings are
missing from the extracted line group.

A composite structure detection step identifies trapezoid-like shapes that are characteris-
tic of wings, tails, and rudder in non-shadow lines (Figure 8.4(b)). Next, an evidence-based
dynamic reasoning process seeks to instantiate one of these composite structures (that are
aligned with the dominant axes) as a wing. This situation is shown in Figure 8.4(c). The
support for this hypothesis, however, is weak, as there is no evidence for the other wing
(i.e., no trapezoid-like structure was detected that is aligned with the same dominant axis).
Subsequently, less "salient" line features are acquired (Figure 8.4(e)) and a trapezoid-like
structure is detected by relaxing the thresholds of the perceptual grouping process. The
final recognition result is shown in Figure 8.4(f).

The experiences gained in this recognition "case" are:

136

lP!ili^^li^li ..«aJR*

(a)

(d) (e) (0

Figure 8.4: High-level object recognition based on CBR (continued), (a) Fitted straight lines;
(b) Detected shadow lines; (c) Trapezoid shapes in non-shadow groups; (d) Hypothesized right wing
and projected left wing; (e) Emergence of additional non-shadow lines; (f) Final recognition result.

• Shadow and object regions are similar (Figures 8.3(a)-(a)), therefore the rear part
of the aircraft could not be recovered (Figure 8.4(f)) without using sensor/platform

information.

• Relative positions of the sun and the sensor had given rise to specularity along the
leading edges of the wings, making these hard to detect from edge information (Figures

8.4(a) and 8.4(d)).

• Evidence of engines had been helpful in hypothesizing a wing (Figure 8.4(d)).

Additional information in this case includes the sun angle, sensor position, sensor/platform
parameters, segmentation parameters, directions of shadow regions in a ROI, etc. Clearly,
such a "case" is valuable when the task is to investigate another ROI, say the one next to
the current one in Figure 8.3(a) which contains another aircraft of the same type (i.e., a
Hercules). The recognition algorithm will use the same segmentation parameters, will try

137

to verify the front parts of the airplane first, and will know that the leading edges of the
wings may be difficult to detect.

8.2.5 Implementation Issues and Performance Evaluation

There are several issues of practical importance in implementing a CBR-based recognition
system. These issues are,

• representation and contents of a case in the memory,

• memory organization and selection of indexing rules and search algorithms,

• incorporation of changes over time in the cases and the indexing rules,

• recognition of a new situation as similar to a previous case, i.e., the choice of similarity
metrics,

• adaptation of old solutions to new problems, i.e., selection of modification rules,

• acceptance or rejection of a new case that is in conflict with a previous case, i.e.,
explaining the differences between two problem situations,

• learning from mistakes and devising the repairing rules.

Unlike the rule-based systems, the rules for indexing, modification, and repair do not make
up the principal knowledge base but, rather, independent support modules. Thus, the
complexity involved is less severe than in most rule-based systems. However, the theory of
case-based reasoning suggests that these rules would themselves be acquired by experience
from cases through a recursive application of the CBR algorithm. That is, the system would
derive rules for indexing, modification, and repair from cases and experience.

The evaluation of the performance of a CBR system can be quite complex due to the
nature of the represented knowledge. One way to express the recognition success would
be to note the similarity between two problem situations. If these situations are identical,
then one would expect identical recognition results. The performance difference would
increase with the difference in the situations. Finding a single difference (or similarity)
metric would be quite complex as there may exist a number of alternatives to compare
two situations. Thus, a multi-objective criterion function would be more appropriate. One
could simply focus on the various rules for indexing, modification, and repair to evaluate
the performance of a CBR system. For example, the hit vs. miss ratio in retrieving cases
from the memory using the indexing rules can be one measure. Various tools from the

138

field of memory management can be used as potential measures to evaluate the efficiency
of memory management in a CBR system, e.g., memory usage, memory fragmentation,
distributed vs. centralized memory, dynamic memory organization.

8.3 Future Work

Our initial goal of learning recognition strategies using case-based approaches would be lim-
ited to PI applications. We have already developed an aircraft recognition system for this
purpose and are in the process of extending it further. Currently, this system can handle
quite complex imagery and the variabilities present in such images would be ideal for a
case-based approach. We have presented some results using this system in this report and
sketched our case-based approach. Since our focus is on developing recognition strategies
through a learning process, we are minimizing our effort to design appropriate CBR tools.
Thus, we are investigating a number of such tools that are currently available commer-
cially, e.g., ESTEEM, CBR-Express, REMIND, and through educational institutions, e.g.,
Mem -1, Tub-Janos. Some of these allow user-defined similarity measures and also some
limited amount of induction. Nonetheless, these tools should provide scope for some initial
experimentation, although in the long run these would not suffice since they are developed
for non-IU applications. Our future effort would also be directed towards detecting and
recognizing other kinds of targets besides aircraft and we would also like to explore ATR
applications of our CBR-based learning system.

139

Chapter 9

Learning Composite Visual
Concepts

9.1 Introduction

The context of the learning problem addressed here is structural object recognition, which is
based on the assumption that structural primitives, extracted from the image in a bottom-up
fashion, can be used to describe and recognize the objects of interest. The main advantage
of this approach is that it facilitates (at least in principle) recognition under object and
aspect variations and, as a recognition-by-components approach, under partial occlusion.

The main problems associated with the structural recognition approach are (a) the com-
putational expense for matching structural object descriptions, (b) the reliable extraction
of structural primitives from the image, and (c) the descriptive limitations of the commonly
used structural features. The combinatorial problems associated with matching structural
descriptions call for methods to limit the search space. When object models are complex,
their direct instantiation, either in a top down or a bottom-up, becomes impractical. A
logical solution is to describe objects as assemblies of smaller substructures (intermediate
visual concepts) that can be instantiated with much less effort. Perceptual grouping meth-
ods (e.g., [49, 72, 79]) make use of this fact by using simple geometrical relationships (e.g.,
collinearity, cotermination, parallelism, etc.) to assemble primitives into more complex fea-
tures. However, due to the domain-independent specification of perceptual groupings, their
"indexing power" is insufficient in applications with more than a few object categories. An-
other weakness of current structural recognition techniques is their reliance upon a single
type of primitive feature, which leads to low redundancy and inappropriate descriptions.

140

We address the first problem by learning significant composite structures that are hi-
erarchically assembled from geometric primitives and serve the purpose of intermediate
goals for partial recognition. The other two problems are approached by using a larger
variety of different structural feature types and corresponding object representations, thus
achieving a higher level of redundancy. For the recognition framework we adopt a model-
based hypothesize-and-test approach that consists of three main steps: primitive extraction,
model-base indexing, and model verification. These three steps operate in a bootstrap fash-
ion, i.e., the process starts in a bottom-up mode by extracting primitives and combining
them in a meaningful way up to a point when a plausible object hypothesis can be made.
Then the recognition process turns into a goal- (model-) directed search and verification
process.

The bottom-up part of the recognition process can be viewed as a multi-stage grouping
process. At the lowest level, individual pixels are grouped to form the structural primitives,
e.g., straight line segments, arcs, regions, etc. At the intermediate-level, the structural
primitives produced by feature extraction are combined into more complex structural ar-
rangements, usually biased by perceptual (i.e., domain-independent) constraints. The main
goals of the second grouping step1 are to

1. combine structural features in a way that they are likely to belong to the same object,
thus reducing the number of "clutter" features that have no correspondence in the
model structure and

2. to produce more expressive, object-specific entities that allow effective indexing into
the model base.

It is the second item that is our main focus in this part of the project. We need to ask the
question, which properties, apart from being perceptually significant, should be incorpo-
rated into the grouping process. We believe that, in order to lead to useful object indices,
this second set of grouping criteria cannot be model- or domain-independent but needs to
be adjusted to the particular application domain, the objects involved, and the context in
which they appear. The value of a particular feature group depends mainly upon (a) its
indexing power, i.e., its capability to select a specific object (or a small set of objects) and
(b) its operationality, i.e., the effort needed to instantiate it. The general approach for the
use of learning to come up with the most effective feature groupings is described in the
following.

JThis step is the one commonly referred to as "grouping."

141

9.2 General Idea

The intermediate-level part of the project is focused on the problem of "inventing" new
composite structural features (intermediate visual concepts) to improve recognition perfor-
mance. We use intermediate visual concepts that are directly related to the application
domain. For this purpose, we select certain high-order assemblies of primitive features
which are both perceptually salient and sufficiently distinct to allow very efficient indexing.
We employ a two-step grouping strategy that consists of

1. a domain-independent perceptual grouping stage (which ensures perceptual saliency
of the selected groups to cope with over-segmentation), followed by

2. a model-based grouping process that is domain-dependent. The high-order, model-
based groups are formed as assemblies from the lower-order perceptual groups.

Current perceptual grouping methods (e.g., [49, 72, 79]) are based on (a) a single type of
primitives and (b) grouping rules that are predetermined and not adapted to the application
domain. The use of a single feature type has the advantage of simple representations
and grouping criteria that can be evaluated efficiently. Also, the corresponding structural
descriptions are independent of the problem domain. The disadvantages are that

1. the perceptual "saliency" of groupings between different types of primitive features is
not used,

2. groupings based on a single feature type are inherently brittle, and

3. fixed, domain-independent grouping rules are not suitable for dynamically changing
scenes.

In our approach, we combine multiple types of structural features at the intermediate level,
such as line segments, conic sections, corners, inflection points, blobs, etc., in order to in-
crease the descriptive power and robustness (through higher redundancy) of the "polymor-
phic" feature groupings. The problem of grouping polymorphic features is more challenging
than grouping features of the same kind, with regard to the representations and grouping
algorithms involved.

The selection and generalization of the intermediate visual concepts is critical in order to
in-sure optimal recognition performance. It requires knowledge of the application domain,
the imaging process, the behavior of the perceptual grouping stage, and the recognition
utility of the intermediate visual concepts. We use Explanation-Based Learning (EBL) to
solve this special knowledge acquisition problem. EBL is useful in this context to detect

142

inherent pattern regularities and to generalize patterns, i.e., to determine the simplest
description with respect to a given set of operators. In summary, the strategy at this level
involves:

1. The use of a two-stage grouping strategy that involves (a) perceptual grouping and
(b) model-based grouping with a database of generalized visual concepts.

2. The use of EBL to automatically infer the most useful intermediate.visual concepts
by applying the entire recognition "engine" to real examples.

3. The use of "polymorphic" feature groupings based on multiple feature types.

The main advantages we expect from this strategy are:

1. A significant reduction of the overall search complexity for structural model instanti-
ation by using high-order intermediate visual concepts.

2. Increased robustness and indexing power from the use of polymorphic groupings.

3. Adaptation of grouping processes to application domains and environmental condi-
tions.

9.2.1 Example

In the aircraft picture shown in Figure 9.1 it is evident that the groups of lines that compose
the wings, tails, and rudders, form high-order groupings that are characteristic for many
types of aircraft. Obtaining a conceptual description of certain configurations, e.g., the
trapezoid that forms the wings, is useful for improving the recognition of other aircraft.

9.2.2 Goals

The main goals at the intermediate level are to automatically acquire new visual concepts
from examples, using Explanation-Based Learning and incorporating polymorphic feature
groupings. We shall demonstrate that the use of domain- and object-specific grouping, in
combination with traditional perceptual grouping, can significantly improve the efficiency
of indexing and object recognition.

143

Figure 9.1: Domain-specific, composite visual concepts are formed by combining perceptually
salient low-order groupings. Here only straight line segments are used as initial primitives. An
example for a simple intermediate-level concept is the typical trapezoid shape found at the ends of
the aircraft wings. Four instances (1-4) of this concept are outlined and marked in this image.

9.3 Approach

The instantiation of visual concepts is performed in a two-stage process (Figure 9.2).
Initially, the simple features extracted from the input image by various different selec-
tion mechanisms (e.g., straight line segments, conic segments, homogeneous blobs, etc.) are
grouped using domain-independent perceptual grouping criteria. Examples for the grouping
criteria are collinearity, cotermination, parallelism, proximity, relative size, symmetry.

At the second stage, domain-specific models of high-order composite structures (inter-
mediate visual concepts) that have been found useful for recognizing objects guide the
grouping process. Visual concepts are learned by the system (see below) and stored in a
local database that is continually updated. Only those groupings are considered here that
were found perceptually significant at the initial perceptual grouping stage. During actual

144

Database of
Intermediate

Visual
Concepts

^
--t.

*;
Simple Features

...V|-/-
Domain-

Independent
Perceptual
Grouping
Criteria

©
Perceptual "Polymorphic" Groupings

Model-Based Grouping

£
Pattern

Generalizer
&

Database
Update

Minimum

Recognition Utility

minimum \ *
Description L/LJ Knowledge

Analysis V *bout,
(FRL) K Groupers

l\r-| Capabilities

Indexing
Object
Models ^ High-Level

Object
New Concept Recognition

®

Figure 9.2: Learning intermediate visual concepts using Explanation-Based Learning (EBL).

(routine) recognition, the visual concepts found at this stage are directly used for indexing

into the object model base.

Learning of new visual concepts is based on the following criteria:

Perceptual saliency: A concept must be perceptually salient, i.e., receive a high score in

the first (perceptual) grouping stage.

Operationality: A concept must be describable in terms of the operators that the model-
based grouper is able to perform. For this purpose, knowledge about these operators

is supplied in explicit form.

Simplicity: Concepts that permit a simple description (i.e., one with few grouping steps

145

/ transformations) are preferred. EBL is used to find the simplest description for a
given feature configuration (Minimum Description Analysis).

Recognition utility: Only those concepts that are found to be useful in recognizing a
particular object are eventually accepted. This is determined by considering the
outcomes of the high-level recognition steps.

Visual concepts in the database are generalizations of the actually observed feature con-
figurations, produced by analytic (EBL) learning (Pattern Generalizer). The representation
of a concept in the database is an annotated symbolic description, which is generalized by
parameterizing specific geometrical properties of the corresponding feature representation.
The task of the Model-Based Grouper module is to instantiate the visual concepts, in the
stream of perceptual groups, operating in a goal-directed fashion. The concepts (goals)
are supplied to the grouper as decision structures that are updated dynamically when the
contents of the database are changed. Interaction with high-level object recognition occurs
in two forms. First, instantiated known groups can be directly used for indexing into the
model base at the high level. (The association between intermediate concepts and object
models is done at the high level.) Secondly, high-level recognition is invoked to determine
the recognition utility of new concepts.

The use of a small set of fixed bottom-up composite structural concepts allows efficient
detection in images. Similar arguments hold for top-down search for specific arrangements
when the number of possible objects is small. The disadvantage of this approach is that a
small but fixed set of intermediate structural concepts is generally not useful in different
application domains. For using top-down, model-based composite structures, the number
of models is restricted. In both cases, the manual specification of suitable intermediate
structures is difficult.

The following specific tasks are involved:

9.3.1 Task 1 — Model-Based Interpretation of Perceptual Groups

We develop methods for collecting structural primitives of different types (e.g., lines, arcs,
parametric curves, blobs) into polymorphic groups, using a set of perceptually significant
spatial relationships. The relationships (e.g., proximity, collinearity, symmetry, relative
size) being used depend upon the type of elements contained in each particular group. The
purpose of this initial bottom-up grouping process is to supply an ordered set of composite
structures that have a high probability of being semantically meaningful. The database of
perceptual relationships used in this task is fixed, i.e., not subject to adaptation during
runtime. However, this database must be designed to allow easy extension when new

146

structural feature types are introduced. The main subtasks are to develop (a) the database
of perceptual relationships, (b) evaluation function to measure the "saliency" of high-order
polymorphic groups, and (c) efficient grouping algorithms that can handle polymorphic
structures.

9.3.2 Task 2 — Composite Structure Model Acquisition and Refinement

We consider the actual semantic significance of perceptual groups with regard to the given
application domain, in contrast to the previous task, where we employ only general percep-
tual cues. The module developed in this task uses the initial perceptual groups developed in
Task B.l for ultimately creating an index into the object model database. For this purpose,
the module tries to form more complex groups from the incoming simple groups by using
a database of semantically relevant structures. The database is created and maintained by
a learning scheme based on Explanation-Based Learning (EBL). The major steps in this
task are (a) the development of a suitable representation for high-order polymorphic fea-
ture groups which can also express their variability, (b) the adaptation of EBL for learning
parameterized geometric concepts and its implementation in software, and (c) the develop-
ment of efficient matching algorithms that can make use of the polymorphic nature of the
feature groups.

9.3.3 Task 3 — Composite Structure Learning Subsystem

The goal of this task is the integration of all components needed for the adaptive inter-
mediate-level learning scheme. Here we address in particular the interaction between the
database of composite feature structures (Task 2) and the object models at the high level.
The interaction with the high-level recognition module is needed to determine the utility of
an observed feature structure for recognizing a particular object.

9.4 Learning at the Intermediate-Level Vision: Previous
Work

Learning at the intermediate level has been applied mainly in the areas of texture recogni-
tion, algorithm parameter adjustment, motion perception, and specific vision tasks, such as
road following. Currently, clustering methods are the most popular adaptation or learning
paradigm at this level, followed by the use of neural networks and some applications of
genetic algorithms. Structural learning methods, such as EBL or CBR are currently much
less used at the intermediate level.

147

An example for inductive learning at the intermediate level is the approach to texture
recognition described by Pachowicz [61]. He uses a scaling process to convert feature vectors
of texture statistics into symbolic intervals and then applies an inductive learning program to
find the most preferred symbolic expression according to a specified criterion. The method
also employs a rule optimization technique after texture learning and prior to recognition to
allow rule generalization. A performance improvement over the traditional nearest-neighbor
clustering method is demonstrated.

Gillies [29] reports a learning system based on Genetic Algorithms for generating image
domain feature detectors to find the location of objects in the image. A genetic search
method is used to generate populations of feature detectors which are morphological opera-
tors. The functions performed by the layered system are tailored to the specific imagery on
which the system is trained. The system is also shown to handle multi-class discrimination.

Another application of Genetic Algorithms at the intermediate level is the work done
by Roth and Levine [76], which is a learning-based approach to extraction of geometric
primitives (parametric curves) from images. In this approach, a geometric primitive is
genetically represented by the minimal set of points instead of its parameters. Learning
involves determining the minimal set of points for a given primitive type that optimally
fits the data. Montana [56] reports an expert system for the interpretation of passive sonar
images that employs a GA for determining detection thresholds.

There is a growing number of neural network applications at the intermediate vision level.
An example is the work by Pomerleau [68] on network-based navigation of autonomous
robots. Due to their inability to capture and generalize structural descriptions, NNs in
general do not appear to be well suited for solving structural problems at the intermediate
level. There are, however, certain functional mapping problems at the intermediate level
that can be addressed successfully with NNs. For example, Aloimonos and Shulman [3] have
suggested the use of NNs to learn the parameters involved in "Shape-from-X" problems.

Intermediate-level composite structures are commonly detected by either bottom-up
grouping criteria (see above) or specified a priori as prototype patterns that are searched
for in a goal-directed manner (e.g., [57]). The work reported by Segen [82] addresses some
aspects of learning composite structural concepts from examples, however, no results have
been shown on real images. Structural feature detection is usually based on a fixed set of
visual primitives for which efficient detection algorithms are available. The incorporation of
features of varying complexity has been addressed using only fixed, domain-independent
grouping criteria. The problem of automatically forming intermediate-level perceptual
shape concepts has found considerable attention in the psychological field recently.

148

9.5 Explanation-Based Learning

Explanation-based learning (EBL) [20] is an extension to an earlier concept called "ex-
planation-based generalization" described by Mitchell et al. in [54]. Both paradigms are
based on the same idea of using strong domain knowledge to "explain" why a given training
example is a member of the concept being learned.

The domain knowledge (or domain theory) required in EBL consists of three main com-
ponents:

1. A specification of the types and properties of the objects being dealt with.

2. A set of inference rules for inferring relations and properties from given relations and
properties, and possible transformations between objects in the domain.

3. A library of problem-solving operators (schemata) that were either learned from earlier
training examples or are hand coded.

The learning task in EBL can be stated as finding a generalized sequence of legal trans-
formations (a schema) to derive the goal configuration from a given initial configuration.
This is usually accomplished in a two-step process:

1. Construct an explanation that is causal with respect to the domain knowledge. This is
similar to constructing a proof sequence for a theorem with respect to a set of axioms.

2. Generalize that explanation into a new schema by looking for the weakest precondi-
tions under which the same explanation would apply.

The main limitation of EBL in its original form lies in the fact that the domain knowledge
must be complete. If a given training example cannot be explained in terms of the existing
domain knowledge, no generalization and thus no learning can take place. Another issue is
the way the domain knowledge is specified and used. In "pure" EBL, the domain knowledge
is expressed in the form of first-order logic predicates or Horn clauses, which provide no
notion of proximity or similarity in a quantitative sense. However, many domains require
handling of approximate, distorted, or noisy descriptions, and are thus not well suited
for EBL in its original form. As a consequence, there have been several suggestions for
extending the capabilities of EBL, in particular for relaxing the problem of incomplete and
and possibly incorrect domain knowledge by combining analytical (EBL) and inductive
learning [83, 55, 63, 85].

A second shortcoming of EBL is its strong dependence of a "good" encoding of the
domain theory rules, which makes it difficult to design a domain theory that produces correct

149

specializations. One approach for solving this problem is to employ a weaker semantic bias
when searching for a solution path, which, however, requires the use of multiple training
examples (EBL can, in principle, produce generalizations from single training examples)
[25].

9.6 EBL and Visual Concepts

In this section, we describe the principles of applying EBL in the context of structural feature
analysis and visual concept acquisition. The first step is to define the basic elements of the
EBL paradigm, i.e., objects, relations, inference rules, initial state, and goal state in terms
of the structural feature domain.

9.6.1 Elements of the Learning Problem

The primitives involved in this learning approach are two-dimensional geometric primi-
tives. The assumption is that we have suitable mechanism available for extracting these
primitives from images. Primitive classes include zero-dimensional primitives (points), one-
dimensional primitives (straight line segments, arcs), and fully two-dimensional primitives
(closed curves, elliptical regions, parametric blobs, etc.), as indicated in Figure 9.2. We call
these three primitive classes Vo, V\, and V2, respectively.

The domain knowledge in this case consists of:

1. the properties of the individual primitives,

2. the spatial relations between primitives, and

3. a set of operators for combining (grouping) primitives into more complex arrange-
ments.

The knowledge can be interpreted as a picture language (or algebra) for describing almost
arbitrary configurations of picture primitives. In general, there is more than one possible
description for a given arrangement of picture primitives. The learning problem consists of
finding the simplest description (or a small set of simple descriptions) for a given picture
configuration with respect to the current domain knowledge. The simplified descriptions
found in the learning process become new intermediate-level visual concepts that are added
to the current domain knowledge and can, in turn, become part of other object descriptions.

To evaluate the complexity of a particular description, each operator is associated with
a cost term that represents the complexity of applying that operator or transformation. A

150

similar approach is used in most approximate string matching techniques, where certain
costs are associated with each character insertion, deletion, and replacement to compute a
minimum "string edit" distance. The individual operator costs are assumed to be predefined
and constant, at least originally. The questions of (a) how the operator costs should be
related to the actual recognition mechanism and (b) if they can and should be learned pose
interesting research topics.

9.7 Future Work

The work towards visual concept learning described in this chapter is still in an initial
phase. Currently, our short-term goal in this problem area is to formalize the learning
problem in precise terms and to specify suitable representations, learning algorithms, and
performance measures. The plan is to adapt existing learning tools to this specific problem
and to integrate these tools with other software components wherever possible. In addition,
we are currently creating the necessary low-level operators for extracting structural features
of various types that will allow to perform initial experiments on actual image data.

151

Bibliography

[1] D. Ackley. Stochastic iterated genetic hillclimbing. Technical Report CMU-CS-87-107,
Carnegie Mellon University, Dept. of Computer Science, March 1987.

[2] J.A. Adam. Peacekeeping by technical means. IEEE Spectrum, 23(7):42-56, July 1986.

[3] J. Aloimonos and D. Shulman. Learning shape computations. In Proc. DARPA Image
Understanding Workshop, pages 862-873, 1987.

[4] K.D. Ashley. Arguing by analogy in law: A case-based model. In D.H. Helman, editor,
Analogical Reasoning: Perspectives of Artificial Intelligence, Cognitive Science, and
Philosophy. Boston, MA: Kluwer, 1988.

[5] K.D. Ashley and E. Rissland. A case-based approach to modeling legal expertise. IEEE
Expert, Summer 1988.

[6] A.G. Barto, R.S. Sutton, and C.J.C.H. Watkins. Learning and sequential decision
making. Technical report, Univ. of Massachusetts, Amherst, MA, 1989.

[7] B. Bhanu. Automatic target recognition: State of the art survey. In IEEE Trans.
Aerospace and Electronic Systems, volume 22 of AES, pages 364-379, 1986.

[8] B. Bhanu, X. Bao, and J. Peng. Reinforcement learning integrated image. In Proceed-
ings of DARPA Image Understanding Workshop, New Orleans, LA, May 1997.

[9] B. Bhanu, R.N. Braithwaite, W. Burger, S. Rong, and X. Wu. Gabor waveletets
for automatic target detection and recognition, quarterly report to ARPA. Technical
report, College of Engineering, University of California, Riverside, CA, September,
1994.

[10] B. Bhanu and T. Jones. Image understanding research for automatic target recognition.
In DARPA Image Understanding Workshop, pages 249-259, 1992.

152

[11] B. Bhanu and T. Jones. Image understanding research for automatic target recognition.
IEEE Trans, on Aerospace and Electronic Systems, 8(10):15-23, Oct. 1993.

[12] B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation. Kluwer
Academic Publishers, Boston, MA, Summer 1994.

[13] B. Bhanu, S. Lee, and S. Das. Adaptive image segmentation using genetic and hybrid
search methods. IEEE Trans, on Aerospace and Electronic Systems, July 1995.

[14] B. Bhanu, S. Lee, and J. Ming. Adaptive image segmentation using a genetic algorithm.
IEEE Trans, on Systems, Man and Cybernetics, July 1995.

[15] B. Bhanu and J. Ming. Recognition of occluded objects: A cluster-structure algorithm.
Pattern Recognition, 20(2):199-211, 1987.

[16] E.L. Bienenstock, L.N. Cooper, and P.W. Munro. Theory for the development of
neuron selectivity: Orientation specificity and binocular interaction in visual cortex.
Journal Neuroscience, 2:32-48, 1982.

[17] D. Chapman. Intermediate vision: Architecture implementation, and use. Cognitive
Science, 16:491-537, 1992.

[18] R.T. Chin and C.R. Dyer. Model-based recognition in robot vision. ACM Computing
Surveys, pages 67-108, March 1994.

[19] S. Das, B. Bhanu, and C.C. Ho. Generic object recognition using multiple. In Image
and Vision Computing 14, pages 323-338, 1996.

[20] G.F. DeJong and R. Mooney. Explanation-based learning: An alternative view. Ma-
chine Learning, 1:145-176, 1986.

[21] K. DeJong. Learning with genetic algorithms: An overview. Machine Learning, 3:121-
138, 1988.

[22] M. Dorigo and M. Colombetti. Robot shaping: Developing autonomous agents through
learning. Artificial Intelligence, pages 321-370, December 1994.

[23] B.A. Draper, C.E. Brodley, and RE. Utgoff. Goal-directed classification using linear
machine decision trees. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 16(9):888-893, 1994.

[24] M.A. Fischler. On the representation of natural scenes. In A.R. Hanson and E.M.
Riseman, editors, Computer Vision Systems. Academic, New York, 1978.

153

[25] N.S. Flann and T.G. Dietterich. A study of explanation-based methods for inductive
learning. Machine Learning, 4:187-266, 1989.

[26] K.S. Fu and J.K. Mui. A survey on image segmentation. Pattern Recognition, 13:3-16,
1981.

[27] K. Fukushima, S. Miyake, and T. Ito. Neocognition: A neural network model for
a mechanism of visual patte rn recognition. In IEEE Trans, on Systems, Man and
Cybernetics, pages 826-834, September and October 1983.

[28] D. Genter. Structure-mapping: A theoretical framework for analogy. Cognitive Science,
7(2):411-436, 1983.

[29] A.M. Gillies. Machine Learning Procedures for Generating Image Domain Feature
Detectors. PhD thesis, University of Michigan, Ann Arbor, MI, April 1985.

[30] D. Goldberg. Computer-Aided Gas Pipeline Operation using Genetic Algorithms and
Rule Learning. PhD thesis, Dept. of Civil Engineering, University of Michigan, Ann
Arbor, MI, 1983.

[31] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

[32] D.E. Goldberg. Dynamic system control using rule learning and genetic algorithms. In
Proceedings of International Joint Conference on Artificial Intelligence, pages 588-592,
1985.

[33] D.E. Goldberg and J.H. Holland. Special issue on genetic algorithms. Machine Learn-
ing, 2/3,1988.

[34] J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Trans. Systems, Man, and Cybernetics, 16(1):122-128, January 1986.

[35] J.J. Grefenstette, R. Gopal, B.J. Rosmaita, and D. VanGucht. Genetic algorithm for
the traveling salesman problem. In Proc. of Intl. Conf. Genetic Algorithms and Their
Applications, pages 160-168, July 1987.

[36] V. Gullapalli. A stochastic reinforcement learning algorithm for learning real-valued
functions. Neural Networks, 3(6):671-692, 1990.

[37] V. Gullapalli. Associate reinforcement learning of real-valued functions. Technical
report, Department of Computer and Information Science, University of Massachusetts,
Amherst, May, 1993.

154

[38] R.M. Haralick. Performance characterization protocol in computer vision. In Proc.
Performance Versus Methodology in Computer Vision, pages 26-32, Seattle, WA, June
1994.

[39] R.M. Haralick and L.G. Shapiro. Image segmentation techniques. Computer Vision,
Graphics and Image Processing, 29:100-132, 1985.

[40] R.M. Haralick and L.G. Shapiro. Segmentation of images having unimodal distribu-
tions. In Computer Vision, Graphics and Image Processing, pages 100-132, 1985.

[41] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, 1975.

[42] J. Holland. Escaping brittleness: The possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In R. Michalski, J. Carbonell, and
T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, volume II,
pages 593-623. Morgan Kaufman, Los Altos, CA, 1986.

[43] N. Intrator and L.N. Cooper. Objective function formulation of the BCM theory of
visual cortical plasticity: Statistical connections, stability conditions. Neural Networks,
5:3-17, 1992.

[44] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, pages 237-285, 1996.

[45] J.L. Kolodner, R.L. Simpson, and K. Sycara. A process model of case-based reasoning
in problem solving. In Proc. 9th Intl. Joint Conf. Artificial Intelligence. Los Angeles,
CA, 1985.

[46] K.I. Laws. The phoenix image segmentation system: Description and evaluation. Tech-
nical Report 289, SRI International, Dec. 1982.

[47] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and
L.D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1:541-551, 1989.

[48] R. Linsker. Self-organisation in a perceptual network. Computer, 21(3):105-117,1988.

[49] D.G. Lowe. Three-dimensional object recognition from single two-dimensional images.
Artificial Intelligence, 31:355-395, 1987.

[50] R. Maclin and J.W. Shavlik. Creating advice-taking reinforcement learners. Machine
Learning, pages 251-281, 1996.

155

51] V.R. Mandava, J.M. Fitzpatrick, and D.R. Pickens III. Adaptive search space scaling
in digital image registration. IEEE Trans, on Medical Imaging, 8(3):251-262, 1989.

52] J.L. Marroquin and F. Girosi. Some extensions of the k-means algorithm for image
segmentation and pattern classification. A.I. Memo No. 1390, MIT AI Lab, 1993.

53] D.L. Milgram. Region extraction using convergent series. Computer Graphics and
Image Processing, pages 1-12, 1979.

54] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based generalization:
A unifying view. Machine Learning, 1:47-80, 1986.

55] T.M. Mitchell and A.B. Thrun. Explanation-based learning: A comparison of symbolic
and neural network approaches. In Machine Learning: Proc. of the Tenth International
Conference, pages 197-204, Amherst, MA, June 1993. Morgan Kaufmann.

56] D.J. Montana. Empirical learning using rule threshold optimization for detection of
events in synthetic images. Machine Learning, 5:427-450, 1990.

57] T.N. Mudge, J.L. Turney, and R.A. Volz. Automatic generation of salient features for
the recognition of partially occluded parts. Robotica, 5:117-127, 1987.

58] K.S. Narendra and M.A.L. Thathatchar. Learning Automata: An Introduction. Pren-
tice Hall, Englewood Cliffs, NJ, 1989.

59] R. Ohlander, K. Price, and D.R. Reddy. Picture segmentation using a recursive region
splitting method. Computer Graphics and Image Processing, 8:313-333, 1978.

60] E. Oja. A simplified neuron model as a principal component analyzer. Journal of
Mathematical Biology, 15:267-273, 1982.

61] P.W. Pachowicz. Integrating low-level features computation with inductive learning
techniques for texture recognition. Int'l. Journal Pattern Recognition and Artificial
Intelligence, 4(2):147-165, 1990.

62] T. Pavlidis. Springer-verlag, berlin-heidelberg-new york. Structural Pattern Recogni-
tion, 1977.

63] M.J. Pazzani. Detecting and correcting errors of omission after explanation-based
learning. In Proc. IJCAI-89, pages 713-718, 1989.

64] J. Peng and B. Bhanu. Closed-loop object recognition using reinforcement learning. In
Proc. DARPA Image Understanding Workshop, pages 777-780, Monterey, CA, Novem-
ber 14-16 1994.

156

[65] J. Peng and B. Bhanu. Closed-loop object recognition using reinforcement learning.
In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 538-543, San Francisco, CA, June 1996.

[66] J. Peng and B. Bhanu. Delayed reinforcement learning for closed-loop object recog-
nition. In Proc. of the 13th Int'l Conference on Pattern Recognition, pages 310-314,
Vienna, Austria, August 1996.

[67] J. Peng and R.J. Williams. Incremental multi-step q-learning. In Proceedings of the
11th International Conference on Machine Learning, pages 226-232, New Brunswick,

NJ, 1994.

[68] D.A. Pomerleau. Neural network based autonomous navigation. In C. Thorpe, edi-
tor, Vision and Navigation: The Carnegie Mellon Navlab, pages 83-93. Boston, MA:
Kluwer, 1990.

[69] V. Ramesh. Performance characterization of image understanding algorithms. PhD
thesis, University of Washington, Ann Arbor, MI, 1995.

[70] J. Rasure and D. Argiro. Khoros User's Manual. University of New Mexico, 1991.

[71] B. Ravichandran. 2D and 3D model-base matching using a minimun representation
criterion and hybrid genetic algorithm. Technical Report 105, Center for Intelligent
Robotic Systems for Space Exploration, Rensselaer Polytechnic Institute, Troy, NY,

1993.

[72] G. Reynolds and J.R. Beveridge. Searching for geometric structure in images of natural
scenes. In DARPA IU Workshop, pages 257-271, Los Angeles, CA, 1987.

[73] C. Riesbeck and R. Schänk. Inside Case-Based Reasoning. Hillsdale, NJ: Erlbaum,
1989.

[74] S. Rong and B. Bhanu. Characterizing natural backgrounds for target detection. In
Proc. ARPA Image Understanding Workshop, Monterey, CA, November 14-16 1994.

[75] S. Rong and B. Bhanu. Enhancing a self-organizing map through near-miss injection. In
Proc. of the 1995 World Congress On Neural Networks, pages 1552-1556, Washington,
D.C., 1995.

[76] G. Roth and M.D. Levine. A genetic algorithm for primitive extraction. In Proc. Int'l.
Conf. Genetic Algorithms, pages 487-494, San Diego, CA, July 1991.

157

[77] G. Roth and M.D. Levine. Geometric primitive extraction using a genetic algorithm. In
IEEE Conf. on Computer Vision and Pattern Recognition, pages 640-643, Champaign,
IL, June 1992.

[78] T.D. Sänger. Optimal unsupervised learning in a single-layer linear feedforward neural
network. Neural Network, 2:459-473, 1989.

[79] E. Saund. Symbolic construction of a 2-d scale-space image. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(8):355-395, 1990.

[80] R. Schänk. Dynamic Memory: A Theory of Learning in Computers and People. Cam-
bridge, MA: Cambridge University Press, 1982.

[81] R. Schänk and R. Abelson. Scripts, Plans, Goals, and Understanding. Hillsdale, NJ:
Lawrence Erlbaum, 1977.

[82] J. Segen. Learning structural descriptions of shape. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pages 96-99, 1985.

[83] A.M. Segre, editor. Workshop on Combining Empirical and Explanation-Based Learn-
ing, Proc. 6th International Workshop on Machine Learning, pp. 1-93, San Mateo, CA,
1989. Morgan Kaufmann.

[84] S. Shafer and T. Kanade. Recursive region segmentation by analysis of histograms.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 1166-1171, 1982.

[85] J.W. Shavlik and G.G. Towell. An approach to combining explanation-based and neural
learning algorithms. Connection Science, l(3):231-253, 1989.

[86] J.W. Sherman, D.N. Spector, C.W. "Ron" Swonger, L.G. Clark, E.G. Zelnio, M.J.
Lahart, and T.L. Jones. Automatic target recognition systems. In L. Shumaker, edi-
tor, The Infrared and Electro-optical Systems Handbook, pages 343-402. SPIE Optical
Engineering Press, 1993.

[87] P. Suetens, P. Fua, and A.J. Hanson. Computational strategies for object recognition.
ACM Computing Surveys, 24(l):5-59, 1992.

[88] R.S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9-44, 1988.

[89] S. Thrun and A. Schwartz. Segmentation of images having unimodal distributions. In
Proc. of Advances in Neural Information Processing Systems 7, pages 385-392, Denver,
CO, 1994.

158

[90] J.R. Ulimann. Edge replacement in the recognition of occluded objects. In Pattern
Recognition 26(12), pages 1771-1784, 1993.

[91] S. Wang and T. Binford. Local step edge estimation - a new algorithm, statistical
model, and performance evaluation. In Proc. of ARPA Image Understanding Work-
shop, pages 1063-70, April 1993.

[92] C.J.C.H. Watkins. Learning from delayed rewards. PhD thesis, King's College, UK,
1989.

[93] R.J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 3:229-256, 1992.

[94] R.J. Williams and J. Peng. Function optimatization using connectionist reinforcement
learning. Connection Science, 3(3), 1991.

[95] P.H. Winston. Artificial Intelligence. Reading, MA: Addison-Wesley, 1984.

[96] Y.-J. Zheng. Feature extraction and image segmentation using self-organization net-
works. Machine Vision and Applications, 8(5):262-274, 1995.

[97] Y.-J. Zheng and B. Bhanu. Adaptive object detection based on modified hebbian
learning. In Proc. of 13th Int'l. Conference on Pattern Recognition, volume 4, pages
164-168, August 1996.

[98] Y.-J. Zheng, W. Ritter, and R. Janssen. An adaptive system for traffic sign recognition.
In Proc. Intelligent Vehicles Symposium, pages 165-170, Oct. 1994.

159

